Ajay Kumar, Prateek Sharma, Divya Deep Yadav, Ranjana Jha
{"title":"通过 1T/2H MoS2 纳米花高效光催化降解用于废水处理的孔雀石绿染料","authors":"Ajay Kumar, Prateek Sharma, Divya Deep Yadav, Ranjana Jha","doi":"10.1134/S1061933X2360118X","DOIUrl":null,"url":null,"abstract":"<p>The scientific community has preferred the photocatalysis process to remove organic pollutants from water. Many catalysts have been developed over the years, and one such catalyst is molybdenum disulfide (MoS<sub>2</sub>), which is a two-dimensional (2D) material with an energy bandgap in the visible spectrum. In this manuscript, the facile synthesis of MoS<sub>2</sub> nanostructures in varying molybdenum (Mo) and sulphur (S), Mo/S ratios has been demonstrated through a single-pot hydrothermal route. The structural validation of the nanostructures was done using X-ray diffraction (XRD) patterns. Further, the morphological information about the MoS<sub>2</sub> nanostructures was gathered using the Field Emission Scanning Electron Microscope (FE-SEM) and High-Resolution Transmission Electron Microscope (HR-TEM) analyses. The photodegradation process of the Malachite Green dye was analyzed by UV-visible absorption spectroscopy. The results showed that 1T/2H MoS<sub>2</sub> nanoflowers degraded the malachite green dye with a degradation efficiency of 98.4%. The decomposition of this commonly used dye possesses great significance in industrial waste water treatment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Effective Photocatalytic Degradation of Malachite Green Dye for Waste Water Treatment through 1T/2H MoS2 Nanoflower\",\"authors\":\"Ajay Kumar, Prateek Sharma, Divya Deep Yadav, Ranjana Jha\",\"doi\":\"10.1134/S1061933X2360118X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The scientific community has preferred the photocatalysis process to remove organic pollutants from water. Many catalysts have been developed over the years, and one such catalyst is molybdenum disulfide (MoS<sub>2</sub>), which is a two-dimensional (2D) material with an energy bandgap in the visible spectrum. In this manuscript, the facile synthesis of MoS<sub>2</sub> nanostructures in varying molybdenum (Mo) and sulphur (S), Mo/S ratios has been demonstrated through a single-pot hydrothermal route. The structural validation of the nanostructures was done using X-ray diffraction (XRD) patterns. Further, the morphological information about the MoS<sub>2</sub> nanostructures was gathered using the Field Emission Scanning Electron Microscope (FE-SEM) and High-Resolution Transmission Electron Microscope (HR-TEM) analyses. The photodegradation process of the Malachite Green dye was analyzed by UV-visible absorption spectroscopy. The results showed that 1T/2H MoS<sub>2</sub> nanoflowers degraded the malachite green dye with a degradation efficiency of 98.4%. The decomposition of this commonly used dye possesses great significance in industrial waste water treatment.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X2360118X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X2360118X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly Effective Photocatalytic Degradation of Malachite Green Dye for Waste Water Treatment through 1T/2H MoS2 Nanoflower
The scientific community has preferred the photocatalysis process to remove organic pollutants from water. Many catalysts have been developed over the years, and one such catalyst is molybdenum disulfide (MoS2), which is a two-dimensional (2D) material with an energy bandgap in the visible spectrum. In this manuscript, the facile synthesis of MoS2 nanostructures in varying molybdenum (Mo) and sulphur (S), Mo/S ratios has been demonstrated through a single-pot hydrothermal route. The structural validation of the nanostructures was done using X-ray diffraction (XRD) patterns. Further, the morphological information about the MoS2 nanostructures was gathered using the Field Emission Scanning Electron Microscope (FE-SEM) and High-Resolution Transmission Electron Microscope (HR-TEM) analyses. The photodegradation process of the Malachite Green dye was analyzed by UV-visible absorption spectroscopy. The results showed that 1T/2H MoS2 nanoflowers degraded the malachite green dye with a degradation efficiency of 98.4%. The decomposition of this commonly used dye possesses great significance in industrial waste water treatment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.