非线性薛定谔方程中与具有多根特征的阿德勒--莫泽多项式相关的流波模式

Huian Lin, Liming Ling
{"title":"非线性薛定谔方程中与具有多根特征的阿德勒--莫泽多项式相关的流波模式","authors":"Huian Lin, Liming Ling","doi":"arxiv-2405.19602","DOIUrl":null,"url":null,"abstract":"In this work, we analyze the asymptotic behaviors of high-order rogue wave\nsolutions with multiple large parameters and discover novel rogue wave\npatterns, including claw-like, OTR-type, TTR-type, semi-modified TTR-type, and\ntheir modified patterns. A correlation is established between these rogue wave\npatterns and the root structures of the Adler--Moser polynomials with multiple\nroots. At the positions in the $(x,t)$-plane corresponding to single roots of\nthe Adler--Moser polynomials, these high-order rogue wave patterns\nasymptotically approach first-order rogue waves. At the positions in the\n$(x,t)$-plane corresponding to multiple roots of the Adler--Moser polynomials,\nthese rogue wave patterns asymptotically tend toward lower-order fundamental\nrogue waves, dispersed first-order rogue waves, or mixed structures of these\nrogue waves. These structures are related to the root structures of special\nAdler--Moser polynomials with new free parameters, such as the\nYablonskii--Vorob'ev polynomial hierarchy, among others. Notably, the positions\nof the fundamental lower-order rogue waves or mixed structures in these rogue\nwave patterns can be controlled freely under specific conditions.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rogue wave patterns associated with Adler--Moser polynomials featuring multiple roots in the nonlinear Schrödinger equation\",\"authors\":\"Huian Lin, Liming Ling\",\"doi\":\"arxiv-2405.19602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we analyze the asymptotic behaviors of high-order rogue wave\\nsolutions with multiple large parameters and discover novel rogue wave\\npatterns, including claw-like, OTR-type, TTR-type, semi-modified TTR-type, and\\ntheir modified patterns. A correlation is established between these rogue wave\\npatterns and the root structures of the Adler--Moser polynomials with multiple\\nroots. At the positions in the $(x,t)$-plane corresponding to single roots of\\nthe Adler--Moser polynomials, these high-order rogue wave patterns\\nasymptotically approach first-order rogue waves. At the positions in the\\n$(x,t)$-plane corresponding to multiple roots of the Adler--Moser polynomials,\\nthese rogue wave patterns asymptotically tend toward lower-order fundamental\\nrogue waves, dispersed first-order rogue waves, or mixed structures of these\\nrogue waves. These structures are related to the root structures of special\\nAdler--Moser polynomials with new free parameters, such as the\\nYablonskii--Vorob'ev polynomial hierarchy, among others. Notably, the positions\\nof the fundamental lower-order rogue waves or mixed structures in these rogue\\nwave patterns can be controlled freely under specific conditions.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.19602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们分析了具有多个大参数的高阶无赖波解的渐近行为,发现了新的无赖波型,包括爪型、OTR 型、TTR 型、半修正 TTR 型及其修正型。在这些无赖波型与具有多根的阿德勒--莫瑟多项式的根结构之间建立了相关性。在$(x,t)$平面上与阿德勒--莫泽多项式单根相对应的位置,这些高阶无赖波模式渐近于一阶无赖波。在$(x,t)$平面上与阿德勒--莫瑟多项式的多个根相对应的位置,这些流氓波模式渐近地趋向于低阶基本流氓波、分散的一阶流氓波或流氓波的混合结构。这些结构与带有新自由参数的特殊阿德勒--莫瑟多项式的根结构有关,如雅布隆斯基--沃罗布夫多项式层次结构等。值得注意的是,在这些流氓波模式中,基本低阶流氓波或混合结构的位置可以在特定条件下自由控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rogue wave patterns associated with Adler--Moser polynomials featuring multiple roots in the nonlinear Schrödinger equation
In this work, we analyze the asymptotic behaviors of high-order rogue wave solutions with multiple large parameters and discover novel rogue wave patterns, including claw-like, OTR-type, TTR-type, semi-modified TTR-type, and their modified patterns. A correlation is established between these rogue wave patterns and the root structures of the Adler--Moser polynomials with multiple roots. At the positions in the $(x,t)$-plane corresponding to single roots of the Adler--Moser polynomials, these high-order rogue wave patterns asymptotically approach first-order rogue waves. At the positions in the $(x,t)$-plane corresponding to multiple roots of the Adler--Moser polynomials, these rogue wave patterns asymptotically tend toward lower-order fundamental rogue waves, dispersed first-order rogue waves, or mixed structures of these rogue waves. These structures are related to the root structures of special Adler--Moser polynomials with new free parameters, such as the Yablonskii--Vorob'ev polynomial hierarchy, among others. Notably, the positions of the fundamental lower-order rogue waves or mixed structures in these rogue wave patterns can be controlled freely under specific conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信