非准分裂奇数特殊正交群表征的内窥镜分类

IF 0.9 2区 数学 Q2 MATHEMATICS
Hiroshi Ishimoto
{"title":"非准分裂奇数特殊正交群表征的内窥镜分类","authors":"Hiroshi Ishimoto","doi":"10.1093/imrn/rnae113","DOIUrl":null,"url":null,"abstract":"In an earlier book of Arthur, the endoscopic classification of representations of quasi-split orthogonal and symplectic groups was established. Later Mok gave that of quasi-split unitary groups. After that, Kaletha, Minguez, Shin, and White gave that of non-quasi-split unitary groups for generic parameters. In this paper we prove the endoscopic classification of representations of non-quasi-split odd special orthogonal groups for generic parameters, following Kaletha, Minguez, Shin, and White.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"26 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Endoscopic Classification of Representations of Non-Quasi-Split Odd Special Orthogonal Groups\",\"authors\":\"Hiroshi Ishimoto\",\"doi\":\"10.1093/imrn/rnae113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an earlier book of Arthur, the endoscopic classification of representations of quasi-split orthogonal and symplectic groups was established. Later Mok gave that of quasi-split unitary groups. After that, Kaletha, Minguez, Shin, and White gave that of non-quasi-split unitary groups for generic parameters. In this paper we prove the endoscopic classification of representations of non-quasi-split odd special orthogonal groups for generic parameters, following Kaletha, Minguez, Shin, and White.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae113\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae113","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在阿瑟早先的一本著作中,建立了准分裂正交群和交点群的表征的内视分类。后来,莫克给出了准分裂单元群的内视分类。之后,Kaletha、Minguez、Shin 和 White 又给出了通用参数的非准分裂单元群的内视分类。在本文中,我们继 Kaletha、Minguez、Shin 和 White 之后,证明了泛参数非准分裂奇特正交群的表征的内视分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Endoscopic Classification of Representations of Non-Quasi-Split Odd Special Orthogonal Groups
In an earlier book of Arthur, the endoscopic classification of representations of quasi-split orthogonal and symplectic groups was established. Later Mok gave that of quasi-split unitary groups. After that, Kaletha, Minguez, Shin, and White gave that of non-quasi-split unitary groups for generic parameters. In this paper we prove the endoscopic classification of representations of non-quasi-split odd special orthogonal groups for generic parameters, following Kaletha, Minguez, Shin, and White.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信