C. Gaafele, Edmond B. Madimabe, K. Ndebele, P. Otlaadisa, B. Mozola, T. Matabana, K. Seamolo, P. Pilane
{"title":"非线性波动率与期权价格耦合模型的调制不稳定性","authors":"C. Gaafele, Edmond B. Madimabe, K. Ndebele, P. Otlaadisa, B. Mozola, T. Matabana, K. Seamolo, P. Pilane","doi":"arxiv-2405.19887","DOIUrl":null,"url":null,"abstract":"We study the Coupled Nonlinear volatility and option price model via both\nModulational instability analysis and direct simulations. Since the coupling\nterm for both the volatility and the option price equation is the same, the MI\nresults are dependent on it, and the stability of the volatility exists for the\nsame condition as that of the price. The numerical simulations are done to\ncomfirm the conditions of MI","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulational Instability of the Coupled Nonlinear volatility and option price model\",\"authors\":\"C. Gaafele, Edmond B. Madimabe, K. Ndebele, P. Otlaadisa, B. Mozola, T. Matabana, K. Seamolo, P. Pilane\",\"doi\":\"arxiv-2405.19887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Coupled Nonlinear volatility and option price model via both\\nModulational instability analysis and direct simulations. Since the coupling\\nterm for both the volatility and the option price equation is the same, the MI\\nresults are dependent on it, and the stability of the volatility exists for the\\nsame condition as that of the price. The numerical simulations are done to\\ncomfirm the conditions of MI\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.19887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们通过模拟不稳定性分析和直接模拟来研究耦合非线性波动率和期权价格模型。由于波动率方程和期权价格方程的耦合项是相同的,因此 MI 结果取决于耦合项,波动率的稳定性与期权价格的稳定性存在相同的条件。数值模拟的目的是确认 MI
Modulational Instability of the Coupled Nonlinear volatility and option price model
We study the Coupled Nonlinear volatility and option price model via both
Modulational instability analysis and direct simulations. Since the coupling
term for both the volatility and the option price equation is the same, the MI
results are dependent on it, and the stability of the volatility exists for the
same condition as that of the price. The numerical simulations are done to
comfirm the conditions of MI