非线性波动率与期权价格耦合模型的调制不稳定性

C. Gaafele, Edmond B. Madimabe, K. Ndebele, P. Otlaadisa, B. Mozola, T. Matabana, K. Seamolo, P. Pilane
{"title":"非线性波动率与期权价格耦合模型的调制不稳定性","authors":"C. Gaafele, Edmond B. Madimabe, K. Ndebele, P. Otlaadisa, B. Mozola, T. Matabana, K. Seamolo, P. Pilane","doi":"arxiv-2405.19887","DOIUrl":null,"url":null,"abstract":"We study the Coupled Nonlinear volatility and option price model via both\nModulational instability analysis and direct simulations. Since the coupling\nterm for both the volatility and the option price equation is the same, the MI\nresults are dependent on it, and the stability of the volatility exists for the\nsame condition as that of the price. The numerical simulations are done to\ncomfirm the conditions of MI","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulational Instability of the Coupled Nonlinear volatility and option price model\",\"authors\":\"C. Gaafele, Edmond B. Madimabe, K. Ndebele, P. Otlaadisa, B. Mozola, T. Matabana, K. Seamolo, P. Pilane\",\"doi\":\"arxiv-2405.19887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Coupled Nonlinear volatility and option price model via both\\nModulational instability analysis and direct simulations. Since the coupling\\nterm for both the volatility and the option price equation is the same, the MI\\nresults are dependent on it, and the stability of the volatility exists for the\\nsame condition as that of the price. The numerical simulations are done to\\ncomfirm the conditions of MI\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.19887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过模拟不稳定性分析和直接模拟来研究耦合非线性波动率和期权价格模型。由于波动率方程和期权价格方程的耦合项是相同的,因此 MI 结果取决于耦合项,波动率的稳定性与期权价格的稳定性存在相同的条件。数值模拟的目的是确认 MI
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulational Instability of the Coupled Nonlinear volatility and option price model
We study the Coupled Nonlinear volatility and option price model via both Modulational instability analysis and direct simulations. Since the coupling term for both the volatility and the option price equation is the same, the MI results are dependent on it, and the stability of the volatility exists for the same condition as that of the price. The numerical simulations are done to comfirm the conditions of MI
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信