二维液滴环境中非线性激振的稳定性和动态性

G. Bougas, G. C. Katsimiga, P. G. Kevrekidis, S. I. Mistakidis
{"title":"二维液滴环境中非线性激振的稳定性和动态性","authors":"G. Bougas, G. C. Katsimiga, P. G. Kevrekidis, S. I. Mistakidis","doi":"arxiv-2405.20106","DOIUrl":null,"url":null,"abstract":"We unravel stationary states in the form of dark soliton stripes, bubbles,\nand kinks embedded in a two-dimensional droplet-bearing setting emulated by an\nextended Gross-Pitaevskii approach. The existence of these configurations is\ncorroborated through an effectively reduced potential picture demonstrating\ntheir concrete parametric regions of existence. The excitation spectra of such\nconfigurations are analyzed within the Bogoliubov-de-Gennes framework exposing\nthe destabilization of dark soliton stripes and bubbles, while confirming the\nstability of droplets, and importantly unveiling spectral stability of the kink\nagainst transverse excitations. Additionally, a variational approach is\nconstructed providing access to the transverse stability analysis of the dark\nsoliton stripe for arbitrary chemical potentials and widths of the structure.\nThis is subsequently compared with the stability analysis outcome demonstrating\nvery good agreement at small wavenumbers. Dynamical destabilization of dark\nsoliton stripes via the snake instability is showcased, while bubbles are found\nto feature both a splitting into a gray soliton pair and a transverse\ninstability thereof. These results shed light on unexplored stability and\ninstability properties of nonlinear excitations in environments featuring a\ncompetition of mean-field repulsion and beyond-mean-field attraction that can\nbe probed by state-of-the-art experiments.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and dynamics of nonlinear excitations in a two-dimensional droplet-bearing environment\",\"authors\":\"G. Bougas, G. C. Katsimiga, P. G. Kevrekidis, S. I. Mistakidis\",\"doi\":\"arxiv-2405.20106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We unravel stationary states in the form of dark soliton stripes, bubbles,\\nand kinks embedded in a two-dimensional droplet-bearing setting emulated by an\\nextended Gross-Pitaevskii approach. The existence of these configurations is\\ncorroborated through an effectively reduced potential picture demonstrating\\ntheir concrete parametric regions of existence. The excitation spectra of such\\nconfigurations are analyzed within the Bogoliubov-de-Gennes framework exposing\\nthe destabilization of dark soliton stripes and bubbles, while confirming the\\nstability of droplets, and importantly unveiling spectral stability of the kink\\nagainst transverse excitations. Additionally, a variational approach is\\nconstructed providing access to the transverse stability analysis of the dark\\nsoliton stripe for arbitrary chemical potentials and widths of the structure.\\nThis is subsequently compared with the stability analysis outcome demonstrating\\nvery good agreement at small wavenumbers. Dynamical destabilization of dark\\nsoliton stripes via the snake instability is showcased, while bubbles are found\\nto feature both a splitting into a gray soliton pair and a transverse\\ninstability thereof. These results shed light on unexplored stability and\\ninstability properties of nonlinear excitations in environments featuring a\\ncompetition of mean-field repulsion and beyond-mean-field attraction that can\\nbe probed by state-of-the-art experiments.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.20106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们揭示了暗孤子条纹、气泡和扭结等形式的静止态,这些态嵌入到二维液滴承载环境中,并通过下延格罗斯-皮塔耶夫斯基方法进行了模拟。这些构型的存在通过一个有效的还原势图得到了证实,展示了它们存在的具体参数区域。在波哥留布夫-德-根框架内分析了这些构型的激发光谱,揭示了暗孤子条纹和气泡的不稳定性,同时证实了液滴的稳定性,更重要的是揭示了扭结对横向激发的光谱稳定性。此外,我们还构建了一种变分方法,可以对任意化学势和结构宽度下的暗孤子条纹进行横向稳定性分析。通过蛇形不稳定性展示了暗索利子条纹的动力学不稳定性,同时发现气泡具有分裂成灰色索利子对和横向不稳定性的特征。这些结果揭示了非线性激元在均场排斥和超均场吸引竞争环境中尚未探索的稳定性和不稳定性特性,这些特性可以通过最先进的实验进行探测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and dynamics of nonlinear excitations in a two-dimensional droplet-bearing environment
We unravel stationary states in the form of dark soliton stripes, bubbles, and kinks embedded in a two-dimensional droplet-bearing setting emulated by an extended Gross-Pitaevskii approach. The existence of these configurations is corroborated through an effectively reduced potential picture demonstrating their concrete parametric regions of existence. The excitation spectra of such configurations are analyzed within the Bogoliubov-de-Gennes framework exposing the destabilization of dark soliton stripes and bubbles, while confirming the stability of droplets, and importantly unveiling spectral stability of the kink against transverse excitations. Additionally, a variational approach is constructed providing access to the transverse stability analysis of the dark soliton stripe for arbitrary chemical potentials and widths of the structure. This is subsequently compared with the stability analysis outcome demonstrating very good agreement at small wavenumbers. Dynamical destabilization of dark soliton stripes via the snake instability is showcased, while bubbles are found to feature both a splitting into a gray soliton pair and a transverse instability thereof. These results shed light on unexplored stability and instability properties of nonlinear excitations in environments featuring a competition of mean-field repulsion and beyond-mean-field attraction that can be probed by state-of-the-art experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信