用于高维微生物组数据的新型鲁棒协方差矩阵估算法

Pub Date : 2024-05-28 DOI:10.1111/anzs.12415
Jiyang Wang, Wanfeng Liang, Lijie Li, Yue Wu, Xiaoyan Ma
{"title":"用于高维微生物组数据的新型鲁棒协方差矩阵估算法","authors":"Jiyang Wang,&nbsp;Wanfeng Liang,&nbsp;Lijie Li,&nbsp;Yue Wu,&nbsp;Xiaoyan Ma","doi":"10.1111/anzs.12415","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Microbiome data typically lie in a high-dimensional simplex. One of the key questions in metagenomic analysis is to exploit the covariance structure for this kind of data. In this paper, a framework called approximate-estimate-threshold (AET) is developed for the robust basis covariance estimation for high-dimensional microbiome data. To be specific, we first construct a proxy matrix <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\boldsymbol{\\Gamma} $$</annotation>\n </semantics></math>, which is almost indistinguishable from the real basis covariance matrix <span></span><math>\n <semantics>\n <mrow>\n <mi>∑</mi>\n </mrow>\n <annotation>$$ \\boldsymbol{\\Sigma} $$</annotation>\n </semantics></math>. Then, any estimator <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Gamma}} $$</annotation>\n </semantics></math> satisfying some conditions can be used to estimate <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\boldsymbol{\\Gamma} $$</annotation>\n </semantics></math>. Finally, we impose a thresholding step on <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Gamma}} $$</annotation>\n </semantics></math> to obtain the final estimator <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>∑</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Sigma}} $$</annotation>\n </semantics></math>. In particular, this paper applies a Huber-type estimator <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Gamma}} $$</annotation>\n </semantics></math>, and achieves robustness by only requiring the boundedness of 2+<span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <annotation>$$ \\epsilon $$</annotation>\n </semantics></math> moments for some <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$$ \\epsilon \\in \\left(0,2\\right] $$</annotation>\n </semantics></math>. We derive the convergence rate of <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>∑</mi>\n </mrow>\n <mo>^</mo>\n </mover>\n </mrow>\n <annotation>$$ \\hat{\\boldsymbol{\\Sigma}} $$</annotation>\n </semantics></math> under the spectral norm, and provide theoretical guarantees on support recovery. Extensive simulations and a real example are used to illustrate the empirical performance of our method.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new robust covariance matrix estimation for high-dimensional microbiome data\",\"authors\":\"Jiyang Wang,&nbsp;Wanfeng Liang,&nbsp;Lijie Li,&nbsp;Yue Wu,&nbsp;Xiaoyan Ma\",\"doi\":\"10.1111/anzs.12415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Microbiome data typically lie in a high-dimensional simplex. One of the key questions in metagenomic analysis is to exploit the covariance structure for this kind of data. In this paper, a framework called approximate-estimate-threshold (AET) is developed for the robust basis covariance estimation for high-dimensional microbiome data. To be specific, we first construct a proxy matrix <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\boldsymbol{\\\\Gamma} $$</annotation>\\n </semantics></math>, which is almost indistinguishable from the real basis covariance matrix <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∑</mi>\\n </mrow>\\n <annotation>$$ \\\\boldsymbol{\\\\Sigma} $$</annotation>\\n </semantics></math>. Then, any estimator <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Gamma}} $$</annotation>\\n </semantics></math> satisfying some conditions can be used to estimate <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\boldsymbol{\\\\Gamma} $$</annotation>\\n </semantics></math>. Finally, we impose a thresholding step on <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Gamma}} $$</annotation>\\n </semantics></math> to obtain the final estimator <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>∑</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Sigma}} $$</annotation>\\n </semantics></math>. In particular, this paper applies a Huber-type estimator <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Gamma}} $$</annotation>\\n </semantics></math>, and achieves robustness by only requiring the boundedness of 2+<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <annotation>$$ \\\\epsilon $$</annotation>\\n </semantics></math> moments for some <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$$ \\\\epsilon \\\\in \\\\left(0,2\\\\right] $$</annotation>\\n </semantics></math>. We derive the convergence rate of <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>∑</mi>\\n </mrow>\\n <mo>^</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\hat{\\\\boldsymbol{\\\\Sigma}} $$</annotation>\\n </semantics></math> under the spectral norm, and provide theoretical guarantees on support recovery. Extensive simulations and a real example are used to illustrate the empirical performance of our method.</p>\\n </div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要微生物组数据通常位于高维单纯形中。元基因组分析的关键问题之一是如何利用这类数据的协方差结构。本文为高维微生物组数据的稳健基础协方差估计建立了一个称为近似估计阈值(AET)的框架。具体来说,我们首先构建一个代理矩阵 ,它与真实的基础协方差矩阵几乎没有区别。然后,任何满足某些条件的估计器都可以用来估计 。最后,我们对其进行阈值化处理,得到最终的估计值。本文特别应用了一种 Huber 型估计器 , 并通过只要求某些 ...的 2+ 矩的有界性来实现稳健性。我们推导了谱规范下的收敛率,并提供了支持恢复的理论保证。我们利用大量模拟和一个实际例子来说明我们方法的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A new robust covariance matrix estimation for high-dimensional microbiome data

Microbiome data typically lie in a high-dimensional simplex. One of the key questions in metagenomic analysis is to exploit the covariance structure for this kind of data. In this paper, a framework called approximate-estimate-threshold (AET) is developed for the robust basis covariance estimation for high-dimensional microbiome data. To be specific, we first construct a proxy matrix Γ $$ \boldsymbol{\Gamma} $$ , which is almost indistinguishable from the real basis covariance matrix $$ \boldsymbol{\Sigma} $$ . Then, any estimator Γ ^ $$ \hat{\boldsymbol{\Gamma}} $$ satisfying some conditions can be used to estimate Γ $$ \boldsymbol{\Gamma} $$ . Finally, we impose a thresholding step on Γ ^ $$ \hat{\boldsymbol{\Gamma}} $$ to obtain the final estimator ^ $$ \hat{\boldsymbol{\Sigma}} $$ . In particular, this paper applies a Huber-type estimator Γ ^ $$ \hat{\boldsymbol{\Gamma}} $$ , and achieves robustness by only requiring the boundedness of 2+ ϵ $$ \epsilon $$ moments for some ϵ ( 0 , 2 ] $$ \epsilon \in \left(0,2\right] $$ . We derive the convergence rate of ^ $$ \hat{\boldsymbol{\Sigma}} $$ under the spectral norm, and provide theoretical guarantees on support recovery. Extensive simulations and a real example are used to illustrate the empirical performance of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信