求助PDF
{"title":"一类莫里塔环上的淤积模块","authors":"Dadi Asefa, Qingbing Xu","doi":"10.1515/math-2024-0009","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Δ</m:mi> <m:mo>=</m:mo> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd> <m:mi>A</m:mi> </m:mtd> <m:mtd> <m:mmultiscripts> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:none/> <m:mprescripts/> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:none/> </m:mmultiscripts> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mmultiscripts> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:none/> <m:mprescripts/> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:none/> </m:mmultiscripts> </m:mtd> <m:mtd> <m:mi>B</m:mi> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>\\Delta =\\left(\\begin{array}{cc}A& {}_{A}N_{B}\\\\ {}_{B}M_{A}& B\\end{array}\\right)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Morita ring, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>N</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>=</m:mo> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>M</m:mi> </m:math> <jats:tex-math>M{\\otimes }_{A}N=0=N{\\otimes }_{B}M</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> be left <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>A</m:mi> </m:math> <jats:tex-math>A</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> be left <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>B</m:mi> </m:math> <jats:tex-math>B</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module. We prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⊕</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>Y</m:mi> <m:mo>,</m:mo> <m:mi>Y</m:mi> <m:mo>,</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(X,M{\\otimes }_{A}X,1,0)\\oplus \\left(N{\\otimes }_{B}Y,Y,0,1)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a silting module if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a silting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>A</m:mi> </m:math> <jats:tex-math>A</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a silting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_011.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>B</m:mi> </m:math> <jats:tex-math>B</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_012.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>X</m:mi> </m:math> <jats:tex-math>M{\\otimes }_{A}X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is generated by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_013.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_014.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>Y</m:mi> </m:math> <jats:tex-math>N{\\otimes }_{B}Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> is generated by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_015.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a consequence, we obtain that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_016.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{M}_{A}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_017.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{N}_{B}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are flat, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_018.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⊕</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>Y</m:mi> <m:mo>,</m:mo> <m:mi>Y</m:mi> <m:mo>,</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(X,M{\\otimes }_{A}X,1,0)\\oplus \\left(N{\\otimes }_{B}Y,Y,0,1)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a tilting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_019.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Δ</m:mi> </m:math> <jats:tex-math>\\Delta </jats:tex-math> </jats:alternatives> </jats:inline-formula>-module if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_020.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a tilting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_021.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>A</m:mi> </m:math> <jats:tex-math>A</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_022.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a tilting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_023.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>B</m:mi> </m:math> <jats:tex-math>B</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_024.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>X</m:mi> </m:math> <jats:tex-math>M{\\otimes }_{A}X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is generated by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_025.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_026.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>Y</m:mi> </m:math> <jats:tex-math>N{\\otimes }_{B}Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> is generated by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0009_eq_027.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silting modules over a class of Morita rings\",\"authors\":\"Dadi Asefa, Qingbing Xu\",\"doi\":\"10.1515/math-2024-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>Δ</m:mi> <m:mo>=</m:mo> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd> <m:mi>A</m:mi> </m:mtd> <m:mtd> <m:mmultiscripts> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:none/> <m:mprescripts/> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:none/> </m:mmultiscripts> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mmultiscripts> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> <m:none/> <m:mprescripts/> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:none/> </m:mmultiscripts> </m:mtd> <m:mtd> <m:mi>B</m:mi> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>\\\\Delta =\\\\left(\\\\begin{array}{cc}A& {}_{A}N_{B}\\\\\\\\ {}_{B}M_{A}& B\\\\end{array}\\\\right)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Morita ring, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>N</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>=</m:mo> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>M</m:mi> </m:math> <jats:tex-math>M{\\\\otimes }_{A}N=0=N{\\\\otimes }_{B}M</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> be left <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>A</m:mi> </m:math> <jats:tex-math>A</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> be left <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>B</m:mi> </m:math> <jats:tex-math>B</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module. We prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⊕</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>Y</m:mi> <m:mo>,</m:mo> <m:mi>Y</m:mi> <m:mo>,</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(X,M{\\\\otimes }_{A}X,1,0)\\\\oplus \\\\left(N{\\\\otimes }_{B}Y,Y,0,1)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a silting module if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_008.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a silting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_009.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>A</m:mi> </m:math> <jats:tex-math>A</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_010.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a silting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_011.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>B</m:mi> </m:math> <jats:tex-math>B</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_012.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>X</m:mi> </m:math> <jats:tex-math>M{\\\\otimes }_{A}X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is generated by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_013.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_014.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>Y</m:mi> </m:math> <jats:tex-math>N{\\\\otimes }_{B}Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> is generated by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_015.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a consequence, we obtain that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_016.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{M}_{A}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_017.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{N}_{B}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are flat, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_018.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⊕</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>Y</m:mi> <m:mo>,</m:mo> <m:mi>Y</m:mi> <m:mo>,</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(X,M{\\\\otimes }_{A}X,1,0)\\\\oplus \\\\left(N{\\\\otimes }_{B}Y,Y,0,1)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a tilting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_019.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>Δ</m:mi> </m:math> <jats:tex-math>\\\\Delta </jats:tex-math> </jats:alternatives> </jats:inline-formula>-module if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_020.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a tilting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_021.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>A</m:mi> </m:math> <jats:tex-math>A</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_022.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a tilting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_023.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>B</m:mi> </m:math> <jats:tex-math>B</jats:tex-math> </jats:alternatives> </jats:inline-formula>-module, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_024.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>M</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>X</m:mi> </m:math> <jats:tex-math>M{\\\\otimes }_{A}X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is generated by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_025.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>Y</m:mi> </m:math> <jats:tex-math>Y</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_026.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:msub> <m:mrow> <m:mo>⊗</m:mo> </m:mrow> <m:mrow> <m:mi>B</m:mi> </m:mrow> </m:msub> <m:mi>Y</m:mi> </m:math> <jats:tex-math>N{\\\\otimes }_{B}Y</jats:tex-math> </jats:alternatives> </jats:inline-formula> is generated by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0009_eq_027.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0009\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
让 Δ = A N B A M A B B \Delta =\left(\begin{array}{cc}A& {}_{A}N_{B}\ {}_{B}M_{A}& Bend{array}\right) 是一个莫里塔环,其中 M ⊗ A N = 0 = N ⊗ B M M{otimes }_{A}N=0=N{otimes }_{B}M 。设 X X 是左 A A 模块,Y Y 是左 B B 模块。我们证明 ( X , M ⊗ A X , 1 , 0 ) ⊕ ( N ⊗ B Y , Y , 0 , 1 ) \left(X,M\{otimes }_{A}X,1,0)\oplus \left(N{\otimes }_{B}Y,Y,0,1) 是一个淤积模块,当且仅当 X X 是一个淤积 A A - 模块、 Y Y 是淤积的 B B -模块,M ⊗ A X M{otimes }_{A}X 由 Y Y 生成,N ⊗ B Y N{\otimes }_{B}Y 由 X X 生成。因此,我们得到,如果 M A {M}_{A} 和 N B {N}_{B} 是平的,那么 ( X , M ⊗ A X , 1 , 0 ) ⊕ ( N ⊗ B Y , Y , 0 , 1 ) \left(X,M{\otimes }_{A}X,1,0)\oplus \left(N{\otimes }_{B}Y,Y,0、当且仅当 X X 是倾斜 A A - 模块,Y Y 是倾斜 B B - 模块,M ⊗ A X M{\otimes }_{A}X 由 Y Y 生成,N ⊗ B Y N{\otimes }_{B}Y 由 X X 生成时,X X 是倾斜 Δ Δ Delta - 模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silting modules over a class of Morita rings
Let Δ = A N B A M A B B \Delta =\left(\begin{array}{cc}A& {}_{A}N_{B}\\ {}_{B}M_{A}& B\end{array}\right) be a Morita ring, where M ⊗ A N = 0 = N ⊗ B M M{\otimes }_{A}N=0=N{\otimes }_{B}M . Let X X be left A A -module and Y Y be left B B -module. We prove that ( X , M ⊗ A X , 1 , 0 ) ⊕ ( N ⊗ B Y , Y , 0 , 1 ) \left(X,M{\otimes }_{A}X,1,0)\oplus \left(N{\otimes }_{B}Y,Y,0,1) is a silting module if and only if X X is a silting A A -module, Y Y is a silting B B -module, M ⊗ A X M{\otimes }_{A}X is generated by Y Y , and N ⊗ B Y N{\otimes }_{B}Y is generated by X X . As a consequence, we obtain that if M A {M}_{A} and N B {N}_{B} are flat, then ( X , M ⊗ A X , 1 , 0 ) ⊕ ( N ⊗ B Y , Y , 0 , 1 ) \left(X,M{\otimes }_{A}X,1,0)\oplus \left(N{\otimes }_{B}Y,Y,0,1) is a tilting Δ \Delta -module if and only if X X is a tilting A A -module, Y Y is a tilting B B -module, M ⊗ A X M{\otimes }_{A}X is generated by Y Y , and N ⊗ B Y N{\otimes }_{B}Y is generated by X X .