剪子同调的同调束理论

Pub Date : 2024-05-29 DOI:10.4310/hha.2024.v26.n1.a20
Mihail Hurmuzov
{"title":"剪子同调的同调束理论","authors":"Mihail Hurmuzov","doi":"10.4310/hha.2024.v26.n1.a20","DOIUrl":null,"url":null,"abstract":"We develop a bundle theory of presheaves on small categories, based on similar work by Brent Everitt and Paul Turner. For a certain set of presheaves on posets, we produce a Leray–Serre type spectral sequence that gives a reduction property for the cohomology of the presheaf. This extends the usual cohomological reduction of posets with a unique maximum.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cohomological bundle theory for sheaf cohomology\",\"authors\":\"Mihail Hurmuzov\",\"doi\":\"10.4310/hha.2024.v26.n1.a20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a bundle theory of presheaves on small categories, based on similar work by Brent Everitt and Paul Turner. For a certain set of presheaves on posets, we produce a Leray–Serre type spectral sequence that gives a reduction property for the cohomology of the presheaf. This extends the usual cohomological reduction of posets with a unique maximum.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n1.a20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们以布伦特-埃弗里特和保罗-特纳的类似研究为基础,发展了小范畴上预设的束理论。对于正集上的某组预设,我们产生了一个勒雷-塞尔型谱序列,给出了预设的同调还原特性。这扩展了具有唯一最大值的正集的通常同调还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A cohomological bundle theory for sheaf cohomology
We develop a bundle theory of presheaves on small categories, based on similar work by Brent Everitt and Paul Turner. For a certain set of presheaves on posets, we produce a Leray–Serre type spectral sequence that gives a reduction property for the cohomology of the presheaf. This extends the usual cohomological reduction of posets with a unique maximum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信