{"title":"考虑工作量分配和最短任务完成时间的机组任务分配和排序方法","authors":"Jianhua Sun, Suihuai Yu, Jianjie Chu, Wenzhe Cun, Hanyu Wang, Chen Chen, Feilong Li, Yuexin Huang","doi":"10.1108/k-01-2024-0096","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine system by rationally distributing workload and minimizing task completion time. Existing related studies exhibit a limited consideration of workload distribution and involve the violation of precedence constraints in the solution process. This study proposes a CTAS method to address these issues.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The method defines visual, auditory, cognitive and psychomotor (VACP) load balancing objectives and integrates them with workload balancing and minimum task completion time to ensure equitable workload distribution and task execution efficiency, and then a multi-objective optimization model for CTAS is constructed. Subsequently, it designs a population initialization strategy and a repair mechanism to maintain sequence feasibility, and utilizes them to improve the non-dominated sorting genetic algorithm III (NSGA-III) for solving the CTAS model.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The CTAS method is validated through a numerical example involving a mission with a specific type of armored vehicle. The results demonstrate that the method achieves equitable workload distribution by integrating VACP load balancing and workload balancing. Moreover, the improved NSGA-III maintains sequence feasibility and thus reduces computation time.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The study can achieve equitable workload distribution and enhance the search efficiency of the optimal CTAS scheme. It provides a novel perspective for task planners in objective determination and solution methodologies for CTAS.</p><!--/ Abstract__block -->","PeriodicalId":49930,"journal":{"name":"Kybernetes","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A crew task allocation and sequencing method considering workload distribution and minimum task completion time\",\"authors\":\"Jianhua Sun, Suihuai Yu, Jianjie Chu, Wenzhe Cun, Hanyu Wang, Chen Chen, Feilong Li, Yuexin Huang\",\"doi\":\"10.1108/k-01-2024-0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine system by rationally distributing workload and minimizing task completion time. Existing related studies exhibit a limited consideration of workload distribution and involve the violation of precedence constraints in the solution process. This study proposes a CTAS method to address these issues.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The method defines visual, auditory, cognitive and psychomotor (VACP) load balancing objectives and integrates them with workload balancing and minimum task completion time to ensure equitable workload distribution and task execution efficiency, and then a multi-objective optimization model for CTAS is constructed. Subsequently, it designs a population initialization strategy and a repair mechanism to maintain sequence feasibility, and utilizes them to improve the non-dominated sorting genetic algorithm III (NSGA-III) for solving the CTAS model.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The CTAS method is validated through a numerical example involving a mission with a specific type of armored vehicle. The results demonstrate that the method achieves equitable workload distribution by integrating VACP load balancing and workload balancing. Moreover, the improved NSGA-III maintains sequence feasibility and thus reduces computation time.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The study can achieve equitable workload distribution and enhance the search efficiency of the optimal CTAS scheme. It provides a novel perspective for task planners in objective determination and solution methodologies for CTAS.</p><!--/ Abstract__block -->\",\"PeriodicalId\":49930,\"journal\":{\"name\":\"Kybernetes\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kybernetes\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/k-01-2024-0096\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetes","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/k-01-2024-0096","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
A crew task allocation and sequencing method considering workload distribution and minimum task completion time
Purpose
In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine system by rationally distributing workload and minimizing task completion time. Existing related studies exhibit a limited consideration of workload distribution and involve the violation of precedence constraints in the solution process. This study proposes a CTAS method to address these issues.
Design/methodology/approach
The method defines visual, auditory, cognitive and psychomotor (VACP) load balancing objectives and integrates them with workload balancing and minimum task completion time to ensure equitable workload distribution and task execution efficiency, and then a multi-objective optimization model for CTAS is constructed. Subsequently, it designs a population initialization strategy and a repair mechanism to maintain sequence feasibility, and utilizes them to improve the non-dominated sorting genetic algorithm III (NSGA-III) for solving the CTAS model.
Findings
The CTAS method is validated through a numerical example involving a mission with a specific type of armored vehicle. The results demonstrate that the method achieves equitable workload distribution by integrating VACP load balancing and workload balancing. Moreover, the improved NSGA-III maintains sequence feasibility and thus reduces computation time.
Originality/value
The study can achieve equitable workload distribution and enhance the search efficiency of the optimal CTAS scheme. It provides a novel perspective for task planners in objective determination and solution methodologies for CTAS.
期刊介绍:
Kybernetes is the official journal of the UNESCO recognized World Organisation of Systems and Cybernetics (WOSC), and The Cybernetics Society.
The journal is an important forum for the exchange of knowledge and information among all those who are interested in cybernetics and systems thinking.
It is devoted to improvement in the understanding of human, social, organizational, technological and sustainable aspects of society and their interdependencies. It encourages consideration of a range of theories, methodologies and approaches, and their transdisciplinary links. The spirit of the journal comes from Norbert Wiener''s understanding of cybernetics as "The Human Use of Human Beings." Hence, Kybernetes strives for examination and analysis, based on a systemic frame of reference, of burning issues of ecosystems, society, organizations, businesses and human behavior.