有界次解析流形上的痕量算子

Anna Valette, Guillaume Valette
{"title":"有界次解析流形上的痕量算子","authors":"Anna Valette, Guillaume Valette","doi":"10.1007/s00029-024-00944-4","DOIUrl":null,"url":null,"abstract":"<p>We prove that if <span>\\(M\\subset {\\mathbb {R}}^n\\)</span> is a bounded subanalytic submanifold of <span>\\({\\mathbb {R}}^n\\)</span> such that <span>\\({\\textbf{B}}(x_0,\\varepsilon )\\cap M\\)</span> is connected for every <span>\\(x_0\\in {{\\overline{M}}}\\)</span> and <span>\\(\\varepsilon &gt;0\\)</span> small, then, for <span>\\(p\\in [1,\\infty )\\)</span> sufficiently large, the space <span>\\({\\mathscr {C}}^\\infty ( {{\\overline{M}}})\\)</span> is dense in the Sobolev space <span>\\(W^{1,p}(M)\\)</span>. We also show that for <i>p</i> large, if <span>\\(A\\subset {{\\overline{M}}}\\setminus M\\)</span> is subanalytic then the restriction mapping <span>\\( {\\mathscr {C}}^\\infty ( {{\\overline{M}}})\\ni u\\mapsto u_{|A}\\in L^p(A)\\)</span> is continuous (if <i>A</i> is endowed with the Hausdorff measure), which makes it possible to define a trace operator, and then prove that compactly supported functions are dense in the kernel of this operator. We finally generalize these results to the case where our assumption of connectedness at singular points of <span>\\( {{\\overline{M}}}\\)</span> is dropped.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace operators on bounded subanalytic manifolds\",\"authors\":\"Anna Valette, Guillaume Valette\",\"doi\":\"10.1007/s00029-024-00944-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that if <span>\\\\(M\\\\subset {\\\\mathbb {R}}^n\\\\)</span> is a bounded subanalytic submanifold of <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> such that <span>\\\\({\\\\textbf{B}}(x_0,\\\\varepsilon )\\\\cap M\\\\)</span> is connected for every <span>\\\\(x_0\\\\in {{\\\\overline{M}}}\\\\)</span> and <span>\\\\(\\\\varepsilon &gt;0\\\\)</span> small, then, for <span>\\\\(p\\\\in [1,\\\\infty )\\\\)</span> sufficiently large, the space <span>\\\\({\\\\mathscr {C}}^\\\\infty ( {{\\\\overline{M}}})\\\\)</span> is dense in the Sobolev space <span>\\\\(W^{1,p}(M)\\\\)</span>. We also show that for <i>p</i> large, if <span>\\\\(A\\\\subset {{\\\\overline{M}}}\\\\setminus M\\\\)</span> is subanalytic then the restriction mapping <span>\\\\( {\\\\mathscr {C}}^\\\\infty ( {{\\\\overline{M}}})\\\\ni u\\\\mapsto u_{|A}\\\\in L^p(A)\\\\)</span> is continuous (if <i>A</i> is endowed with the Hausdorff measure), which makes it possible to define a trace operator, and then prove that compactly supported functions are dense in the kernel of this operator. We finally generalize these results to the case where our assumption of connectedness at singular points of <span>\\\\( {{\\\\overline{M}}}\\\\)</span> is dropped.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00944-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00944-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 \(M\subset {\mathbb {R}}^n\) 是 \({\mathbb {R}}^n\) 的有界次解析子曼形体,使得 \({\textbf{B}}(x_0,\varepsilon )\cap M\) 对于每个 \(x_0\in {{\overline{M}}}\) 和 \(\varepsilon >;0)很小,那么,对于 \(p\in [1,\infty )\) 足够大,空间 \({\mathscr {C}}^\infty ( {{overline{M}}})\)在 Sobolev 空间 \(W^{1,p}(M)\) 中是密集的。我们还证明,对于大 p,如果 \(A 子集 {{\overline{M}}}setminus M\) 是次解析的,那么限制映射 \( {\mathscr {C}}^\infty ( {{\overline{M}}})\ni u\mapsto u_{|A}\in L^p(A)\) 是连续的(如果 A 被赋予 Hausdorff 度量)、这使得我们有可能定义一个迹算子,然后证明紧凑支撑的函数在这个算子的内核中是密集的。最后,我们将这些结果推广到我们放弃了 \( {{overline{M}}}\)奇点连通性假设的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trace operators on bounded subanalytic manifolds

We prove that if \(M\subset {\mathbb {R}}^n\) is a bounded subanalytic submanifold of \({\mathbb {R}}^n\) such that \({\textbf{B}}(x_0,\varepsilon )\cap M\) is connected for every \(x_0\in {{\overline{M}}}\) and \(\varepsilon >0\) small, then, for \(p\in [1,\infty )\) sufficiently large, the space \({\mathscr {C}}^\infty ( {{\overline{M}}})\) is dense in the Sobolev space \(W^{1,p}(M)\). We also show that for p large, if \(A\subset {{\overline{M}}}\setminus M\) is subanalytic then the restriction mapping \( {\mathscr {C}}^\infty ( {{\overline{M}}})\ni u\mapsto u_{|A}\in L^p(A)\) is continuous (if A is endowed with the Hausdorff measure), which makes it possible to define a trace operator, and then prove that compactly supported functions are dense in the kernel of this operator. We finally generalize these results to the case where our assumption of connectedness at singular points of \( {{\overline{M}}}\) is dropped.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信