{"title":"可计算性秩序论方法中的可数性约束","authors":"Pedro Hack, Daniel A. Braun, Sebastian Gottwald","doi":"10.1017/s0960129524000173","DOIUrl":null,"url":null,"abstract":"Computability on uncountable sets has no standard formalization, unlike that on countable sets, which is given by Turing machines. Some of the approaches to define computability in these sets rely on order-theoretic structures to translate such notions from Turing machines to uncountable spaces. Since these machines are used as a baseline for computability in these approaches, countability restrictions on the ordered structures are fundamental. Here, we show several relations between the usual countability restrictions in order-theoretic theories of computability and some more common order-theoretic countability constraints, like order density properties and functional characterizations of the order structure in terms of multi-utilities. As a result, we show how computability can be introduced in some order structures via countability order density and multi-utility constraints.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"43 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Countability constraints in order-theoretic approaches to computability\",\"authors\":\"Pedro Hack, Daniel A. Braun, Sebastian Gottwald\",\"doi\":\"10.1017/s0960129524000173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computability on uncountable sets has no standard formalization, unlike that on countable sets, which is given by Turing machines. Some of the approaches to define computability in these sets rely on order-theoretic structures to translate such notions from Turing machines to uncountable spaces. Since these machines are used as a baseline for computability in these approaches, countability restrictions on the ordered structures are fundamental. Here, we show several relations between the usual countability restrictions in order-theoretic theories of computability and some more common order-theoretic countability constraints, like order density properties and functional characterizations of the order structure in terms of multi-utilities. As a result, we show how computability can be introduced in some order structures via countability order density and multi-utility constraints.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000173\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000173","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Countability constraints in order-theoretic approaches to computability
Computability on uncountable sets has no standard formalization, unlike that on countable sets, which is given by Turing machines. Some of the approaches to define computability in these sets rely on order-theoretic structures to translate such notions from Turing machines to uncountable spaces. Since these machines are used as a baseline for computability in these approaches, countability restrictions on the ordered structures are fundamental. Here, we show several relations between the usual countability restrictions in order-theoretic theories of computability and some more common order-theoretic countability constraints, like order density properties and functional characterizations of the order structure in terms of multi-utilities. As a result, we show how computability can be introduced in some order structures via countability order density and multi-utility constraints.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.