{"title":"超低自热辐射长波红外激光通信光学系统的设计与实验研究","authors":"Meixuan Li, Minghui Gao, Meijiao Wang, Feng Yang","doi":"10.1007/s10946-024-10201-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we design an ultra-low self-heating radiation long-wave infrared laser communicationoptical system, which mainly includes aperture stop, primary mirror, secondary mirror, three-mirror,field stop, four-mirror, window glass, detector light shield, and image plane. The system enters apupil diameter of 280 mm, a field of view angle of 1×1°, a system focal length of 840 mm, and awavelength of 8 − 12 μmkm; the off-axis four-fold anti-structure is adopted. The optical mirror andstructural components of the material are Aluminum, the system’s own thermal radiation equivalent toa black-body temperature of 171 K. The equivalent black-body temperature of the system is measuredin a vacuum chamber. The temperature of the spacer is 100 – 120 K, the temperature of the coldplate is 85 – 87 K, and the integration time is 550 – 800 μs. At this time, the measured equivalentblack-body radiation temperature of the system is 172.9K; it is consistent with the simulation value.The design scheme solves the technical problems of low signal-to-noise ratio, poor image contrast, andshort detection distance of infrared laser communication system.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Experimental Study of Optical System for Ultra-Low Self-Heating Radiation Long-Wave Infrared Laser Communication Optical System\",\"authors\":\"Meixuan Li, Minghui Gao, Meijiao Wang, Feng Yang\",\"doi\":\"10.1007/s10946-024-10201-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we design an ultra-low self-heating radiation long-wave infrared laser communicationoptical system, which mainly includes aperture stop, primary mirror, secondary mirror, three-mirror,field stop, four-mirror, window glass, detector light shield, and image plane. The system enters apupil diameter of 280 mm, a field of view angle of 1×1°, a system focal length of 840 mm, and awavelength of 8 − 12 μmkm; the off-axis four-fold anti-structure is adopted. The optical mirror andstructural components of the material are Aluminum, the system’s own thermal radiation equivalent toa black-body temperature of 171 K. The equivalent black-body temperature of the system is measuredin a vacuum chamber. The temperature of the spacer is 100 – 120 K, the temperature of the coldplate is 85 – 87 K, and the integration time is 550 – 800 μs. At this time, the measured equivalentblack-body radiation temperature of the system is 172.9K; it is consistent with the simulation value.The design scheme solves the technical problems of low signal-to-noise ratio, poor image contrast, andshort detection distance of infrared laser communication system.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10946-024-10201-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-024-10201-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Experimental Study of Optical System for Ultra-Low Self-Heating Radiation Long-Wave Infrared Laser Communication Optical System
In this study, we design an ultra-low self-heating radiation long-wave infrared laser communicationoptical system, which mainly includes aperture stop, primary mirror, secondary mirror, three-mirror,field stop, four-mirror, window glass, detector light shield, and image plane. The system enters apupil diameter of 280 mm, a field of view angle of 1×1°, a system focal length of 840 mm, and awavelength of 8 − 12 μmkm; the off-axis four-fold anti-structure is adopted. The optical mirror andstructural components of the material are Aluminum, the system’s own thermal radiation equivalent toa black-body temperature of 171 K. The equivalent black-body temperature of the system is measuredin a vacuum chamber. The temperature of the spacer is 100 – 120 K, the temperature of the coldplate is 85 – 87 K, and the integration time is 550 – 800 μs. At this time, the measured equivalentblack-body radiation temperature of the system is 172.9K; it is consistent with the simulation value.The design scheme solves the technical problems of low signal-to-noise ratio, poor image contrast, andshort detection distance of infrared laser communication system.