莫雷不等式极值的衰减

Ryan Hynd, Simon Larson, Erik Lindgren
{"title":"莫雷不等式极值的衰减","authors":"Ryan Hynd, Simon Larson, Erik Lindgren","doi":"10.4310/arkiv.2024.v62.n1.a4","DOIUrl":null,"url":null,"abstract":"We study the decay (at infinity) of extremals of Morrey’s inequality in $\\mathbb{R}^n$. These are functions satisfying\\[\\underset{x \\neq y}{\\sup} \\frac{\\lvert u(x)-u(y) \\rvert}{{\\lvert x-y \\rvert}^{1-\\frac{n}{p}}} = C(p,n) {\\lVert \\nabla u (\\mathbb{R}^n \\rVert}_{L^p (\\mathbb{R}^n)} \\; \\textrm{,}\\]where $p \\gt n$ and $C(p, n)$ is the optimal constant in Morrey’s inequality. We prove that if $n \\geq 2$ then any extremal has a power decay of order $\\beta$ for any\\[\\beta \\lt - \\frac{1}{3} + \\frac{2}{3(p-1)} + \\sqrt{\\left( -\\frac{1}{3} + \\frac{2}{3(p-1)} \\right)^2 + \\frac{1}{3}} \\; \\textrm{.}\\]","PeriodicalId":501438,"journal":{"name":"Arkiv för Matematik","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay of extremals of Morrey’s inequality\",\"authors\":\"Ryan Hynd, Simon Larson, Erik Lindgren\",\"doi\":\"10.4310/arkiv.2024.v62.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the decay (at infinity) of extremals of Morrey’s inequality in $\\\\mathbb{R}^n$. These are functions satisfying\\\\[\\\\underset{x \\\\neq y}{\\\\sup} \\\\frac{\\\\lvert u(x)-u(y) \\\\rvert}{{\\\\lvert x-y \\\\rvert}^{1-\\\\frac{n}{p}}} = C(p,n) {\\\\lVert \\\\nabla u (\\\\mathbb{R}^n \\\\rVert}_{L^p (\\\\mathbb{R}^n)} \\\\; \\\\textrm{,}\\\\]where $p \\\\gt n$ and $C(p, n)$ is the optimal constant in Morrey’s inequality. We prove that if $n \\\\geq 2$ then any extremal has a power decay of order $\\\\beta$ for any\\\\[\\\\beta \\\\lt - \\\\frac{1}{3} + \\\\frac{2}{3(p-1)} + \\\\sqrt{\\\\left( -\\\\frac{1}{3} + \\\\frac{2}{3(p-1)} \\\\right)^2 + \\\\frac{1}{3}} \\\\; \\\\textrm{.}\\\\]\",\"PeriodicalId\":501438,\"journal\":{\"name\":\"Arkiv för Matematik\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv för Matematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2024.v62.n1.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv för Matematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/arkiv.2024.v62.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在 $\mathbb{R}^n$ 中莫里不等式极值的衰减(在无穷远处)。这些是函数 satisfying\[\underset{x \neq y}{\sup}\frac{lvert u(x)-u(y) \rvert}{{lvert x-y \rvert}^{1-\frac{n}{p}}} = C(p,n) {\lVert \nabla u (\mathbb{R}^n \rVert}_{L^p (\mathbb{R}^n)} \;\textrm{,}\]其中 $p \gt n$,$C(p, n)$ 是莫雷不等式中的最优常数。我们证明,如果 $n \geq 2$,那么任何极值都有一个阶为 $\beta$ 的幂级数衰减,为 any\[\beta \lt - \frac{1}{3}+ \frac{2}{3(p-1)} + \sqrt{left( -\frac{1}{3})+ \frac{2}{3(p-1)} \right)^2 + \frac{1}{3}}\textrm{.}\]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay of extremals of Morrey’s inequality
We study the decay (at infinity) of extremals of Morrey’s inequality in $\mathbb{R}^n$. These are functions satisfying\[\underset{x \neq y}{\sup} \frac{\lvert u(x)-u(y) \rvert}{{\lvert x-y \rvert}^{1-\frac{n}{p}}} = C(p,n) {\lVert \nabla u (\mathbb{R}^n \rVert}_{L^p (\mathbb{R}^n)} \; \textrm{,}\]where $p \gt n$ and $C(p, n)$ is the optimal constant in Morrey’s inequality. We prove that if $n \geq 2$ then any extremal has a power decay of order $\beta$ for any\[\beta \lt - \frac{1}{3} + \frac{2}{3(p-1)} + \sqrt{\left( -\frac{1}{3} + \frac{2}{3(p-1)} \right)^2 + \frac{1}{3}} \; \textrm{.}\]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信