测试几乎不稳定过程的不稳定程度

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Marie Badreau, Frédéric Proïa
{"title":"测试几乎不稳定过程的不稳定程度","authors":"Marie Badreau,&nbsp;Frédéric Proïa","doi":"10.1111/jtsa.12751","DOIUrl":null,"url":null,"abstract":"<p>This article deals with unit root issues in time series analysis. It has been known for a long time that unit root tests may be flawed when a series although stationary has a root close to unity. That motivated recent papers dedicated to autoregressive processes where the bridge between stability and instability is expressed by means of time-varying coefficients. The process we consider has a companion matrix <span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>A</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow></math> with spectral radius <span></span><math>\n <mrow>\n <mi>ρ</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>A</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow></math> satisfying <span></span><math>\n <mrow>\n <mi>ρ</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>A</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n <mo>→</mo>\n <mn>1</mn>\n </mrow></math>, a situation described as ‘nearly-unstable’. The question we investigate is: given an observed path supposed to come from a nearly unstable process, is it possible to test for the ‘extent of instability’, i.e. to test how close we are to the unit root? In this regard, we develop a strategy to evaluate <span></span><math>\n <mrow>\n <mi>α</mi>\n </mrow></math> and to test for <span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>ℋ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow></math> : ‘<span></span><math>\n <mrow>\n <mi>α</mi>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>α</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow></math>’ against <span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>ℋ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow></math> : ‘<span></span><math>\n <mrow>\n <mi>α</mi>\n <mo>&gt;</mo>\n <msub>\n <mrow>\n <mi>α</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow></math>’ when <span></span><math>\n <mrow>\n <mi>ρ</mi>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>A</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow></math> lies in an inner <span></span><math>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mi>α</mi>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow></math>-neighborhood of the unity, for some <span></span><math>\n <mrow>\n <mn>0</mn>\n <mo>&lt;</mo>\n <mi>α</mi>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow></math>. Empirical evidence is given about the advantages of the flexibility induced by such a procedure compared to the common unit root tests. We also build a symmetric procedure for the usually left out situation where the dominant root lies around <span></span><math>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow></math>.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 1","pages":"33-58"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12751","citationCount":"0","resultStr":"{\"title\":\"Testing for the extent of instability in nearly unstable processes\",\"authors\":\"Marie Badreau,&nbsp;Frédéric Proïa\",\"doi\":\"10.1111/jtsa.12751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article deals with unit root issues in time series analysis. It has been known for a long time that unit root tests may be flawed when a series although stationary has a root close to unity. That motivated recent papers dedicated to autoregressive processes where the bridge between stability and instability is expressed by means of time-varying coefficients. The process we consider has a companion matrix <span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>A</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow></math> with spectral radius <span></span><math>\\n <mrow>\\n <mi>ρ</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>A</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>&lt;</mo>\\n <mn>1</mn>\\n </mrow></math> satisfying <span></span><math>\\n <mrow>\\n <mi>ρ</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>A</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n <mo>→</mo>\\n <mn>1</mn>\\n </mrow></math>, a situation described as ‘nearly-unstable’. The question we investigate is: given an observed path supposed to come from a nearly unstable process, is it possible to test for the ‘extent of instability’, i.e. to test how close we are to the unit root? In this regard, we develop a strategy to evaluate <span></span><math>\\n <mrow>\\n <mi>α</mi>\\n </mrow></math> and to test for <span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </mrow></math> : ‘<span></span><math>\\n <mrow>\\n <mi>α</mi>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </mrow></math>’ against <span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ℋ</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow></math> : ‘<span></span><math>\\n <mrow>\\n <mi>α</mi>\\n <mo>&gt;</mo>\\n <msub>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </mrow></math>’ when <span></span><math>\\n <mrow>\\n <mi>ρ</mi>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>A</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow></math> lies in an inner <span></span><math>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <msup>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mi>α</mi>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow></math>-neighborhood of the unity, for some <span></span><math>\\n <mrow>\\n <mn>0</mn>\\n <mo>&lt;</mo>\\n <mi>α</mi>\\n <mo>&lt;</mo>\\n <mn>1</mn>\\n </mrow></math>. Empirical evidence is given about the advantages of the flexibility induced by such a procedure compared to the common unit root tests. We also build a symmetric procedure for the usually left out situation where the dominant root lies around <span></span><math>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow></math>.</p>\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"46 1\",\"pages\":\"33-58\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12751\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12751\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12751","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论时间序列分析中的单位根问题。人们很早就知道,当一个序列虽然是静态的,但其根接近于统一时,单位根检验可能会有缺陷。这促使最近的一些论文专门讨论自回归过程,在自回归过程中,稳定性和不稳定性之间的桥梁是通过时变系数来表达的。我们所考虑的过程有一个伴生矩阵,其谱半径满足 ,这种情况被描述为 "近乎不稳定"。我们要研究的问题是:给定一条观察到的路径,假设它来自一个近乎不稳定的过程,那么是否有可能检验 "不稳定的程度",即检验我们离单位根有多近?为此,我们开发了一种策略来评估和检验"''与'''的关系,即当......位于单位根的内邻域时,......与......的关系。与普通的单位根检验相比,我们给出了经验证据,证明了这种程序所带来的灵活性优势。我们还建立了一个对称程序,用于通常被忽略的情况,即主根位于......附近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Testing for the extent of instability in nearly unstable processes

Testing for the extent of instability in nearly unstable processes

This article deals with unit root issues in time series analysis. It has been known for a long time that unit root tests may be flawed when a series although stationary has a root close to unity. That motivated recent papers dedicated to autoregressive processes where the bridge between stability and instability is expressed by means of time-varying coefficients. The process we consider has a companion matrix A n with spectral radius ρ ( A n ) < 1 satisfying ρ ( A n ) 1 , a situation described as ‘nearly-unstable’. The question we investigate is: given an observed path supposed to come from a nearly unstable process, is it possible to test for the ‘extent of instability’, i.e. to test how close we are to the unit root? In this regard, we develop a strategy to evaluate α and to test for 0 : ‘ α = α 0 ’ against 1 : ‘ α > α 0 ’ when ρ ( A n ) lies in an inner O ( n α ) -neighborhood of the unity, for some 0 < α < 1 . Empirical evidence is given about the advantages of the flexibility induced by such a procedure compared to the common unit root tests. We also build a symmetric procedure for the usually left out situation where the dominant root lies around 1 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Time Series Analysis
Journal of Time Series Analysis 数学-数学跨学科应用
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering. The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信