通过空间优化树木选择,实现电缆码放木材采伐作业的经济效益最大化

IF 2.6 2区 农林科学 Q1 FORESTRY
Francesco Sforza, Michael Starke, Patrick Dietsch, Peter Thür, Emanuele Lingua, Martin Ziesak
{"title":"通过空间优化树木选择,实现电缆码放木材采伐作业的经济效益最大化","authors":"Francesco Sforza, Michael Starke, Patrick Dietsch, Peter Thür, Emanuele Lingua, Martin Ziesak","doi":"10.1007/s10342-024-01700-1","DOIUrl":null,"url":null,"abstract":"<p>The efficiency of forest logging operations can be strongly affected by the layout of the harvesting pattern, which is usually based on silvicultural constraints and technical feasibility. Specifically, individual tree volume and the spatial distribution of trees significantly impact the overall harvesting performance. Spatial optimization of tree selection at the forest stand level may improve timber harvest efficiency by maximizing key performance indicators, such as the economic benefit, under given operational and silvicultural constraints. In this study, we applied two harvesting operation-optimization approaches based on integer programming for uphill cable yarding operations in mountain areas, including tree selection and load maximization. The first approach involves tree selection based on single tree harvest, while the second one performs tree selection based on tree clusters harvest per work cycle. As input elements a productivity model, derived by time-motion study with a Mounty MT50-2 and individual tree parameters extracted from high-resolution airborne laser scanning data, were prepared. Single tree information was further rated by financial value, and subsequently combined with the productivity model, allowing a detailed breakdown of operational costs. The results showed that optimizing the tree selection while respecting the allowable cut timber volume established in the harvesting plan can improve the efficiency of forest operations. The cluster approach was shown to be more efficient in terms of economic benefit compared to the actual selection, with an increase of 24.94%. However, the single tree approach resulted in a decrease of economic benefit compared to the actual selection, with a decrease of 22.85%.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing the economic benefit for cable yarding timber harvesting operations by spatially optimizing tree selection\",\"authors\":\"Francesco Sforza, Michael Starke, Patrick Dietsch, Peter Thür, Emanuele Lingua, Martin Ziesak\",\"doi\":\"10.1007/s10342-024-01700-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The efficiency of forest logging operations can be strongly affected by the layout of the harvesting pattern, which is usually based on silvicultural constraints and technical feasibility. Specifically, individual tree volume and the spatial distribution of trees significantly impact the overall harvesting performance. Spatial optimization of tree selection at the forest stand level may improve timber harvest efficiency by maximizing key performance indicators, such as the economic benefit, under given operational and silvicultural constraints. In this study, we applied two harvesting operation-optimization approaches based on integer programming for uphill cable yarding operations in mountain areas, including tree selection and load maximization. The first approach involves tree selection based on single tree harvest, while the second one performs tree selection based on tree clusters harvest per work cycle. As input elements a productivity model, derived by time-motion study with a Mounty MT50-2 and individual tree parameters extracted from high-resolution airborne laser scanning data, were prepared. Single tree information was further rated by financial value, and subsequently combined with the productivity model, allowing a detailed breakdown of operational costs. The results showed that optimizing the tree selection while respecting the allowable cut timber volume established in the harvesting plan can improve the efficiency of forest operations. The cluster approach was shown to be more efficient in terms of economic benefit compared to the actual selection, with an increase of 24.94%. However, the single tree approach resulted in a decrease of economic benefit compared to the actual selection, with a decrease of 22.85%.</p>\",\"PeriodicalId\":11996,\"journal\":{\"name\":\"European Journal of Forest Research\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Forest Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10342-024-01700-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01700-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

森林采伐作业的效率会受到采伐模式布局的强烈影响,而采伐模式布局通常基于造林限制和技术可行性。具体来说,单株树木的数量和树木的空间分布会对整体采伐效果产生重大影响。在给定的操作和造林约束条件下,在林分水平上对林木选择进行空间优化,可通过最大化关键性能指标(如经济效益)来提高木材采伐效率。在这项研究中,我们采用了两种基于整数编程的采伐作业优化方法,用于山区上坡电缆码放作业,包括树种选择和负荷最大化。第一种方法涉及基于单棵树木采伐的树木选择,而第二种方法则基于每个工作周期的树木集群采伐进行树木选择。作为输入要素,使用 Mounty MT50-2 进行时间运动研究,并从高分辨率机载激光扫描数据中提取单棵树的参数,从而得出生产率模型。根据经济价值对单棵树木的信息进行了进一步评级,随后与生产率模型相结合,对运营成本进行了详细分解。结果表明,在遵守采伐计划中规定的可伐木材量的同时优化树木选择,可以提高森林作业的效率。与实际选择相比,集群法的经济效益更高,提高了 24.94%。然而,与实际选择相比,单树方法导致经济效益下降,降幅为 22.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maximizing the economic benefit for cable yarding timber harvesting operations by spatially optimizing tree selection

Maximizing the economic benefit for cable yarding timber harvesting operations by spatially optimizing tree selection

The efficiency of forest logging operations can be strongly affected by the layout of the harvesting pattern, which is usually based on silvicultural constraints and technical feasibility. Specifically, individual tree volume and the spatial distribution of trees significantly impact the overall harvesting performance. Spatial optimization of tree selection at the forest stand level may improve timber harvest efficiency by maximizing key performance indicators, such as the economic benefit, under given operational and silvicultural constraints. In this study, we applied two harvesting operation-optimization approaches based on integer programming for uphill cable yarding operations in mountain areas, including tree selection and load maximization. The first approach involves tree selection based on single tree harvest, while the second one performs tree selection based on tree clusters harvest per work cycle. As input elements a productivity model, derived by time-motion study with a Mounty MT50-2 and individual tree parameters extracted from high-resolution airborne laser scanning data, were prepared. Single tree information was further rated by financial value, and subsequently combined with the productivity model, allowing a detailed breakdown of operational costs. The results showed that optimizing the tree selection while respecting the allowable cut timber volume established in the harvesting plan can improve the efficiency of forest operations. The cluster approach was shown to be more efficient in terms of economic benefit compared to the actual selection, with an increase of 24.94%. However, the single tree approach resulted in a decrease of economic benefit compared to the actual selection, with a decrease of 22.85%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.60%
发文量
77
审稿时长
6-16 weeks
期刊介绍: The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services. Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信