Ammar Chakhrit, Imene Djelamda, Mohammed Bougofa, Islam H. M. Guetarni, Abderraouf Bouafia, Mohammed Chennoufi
{"title":"在混合 FMECA 中整合模糊逻辑和多标准决策,实现稳健的风险优先排序","authors":"Ammar Chakhrit, Imene Djelamda, Mohammed Bougofa, Islam H. M. Guetarni, Abderraouf Bouafia, Mohammed Chennoufi","doi":"10.1002/qre.3601","DOIUrl":null,"url":null,"abstract":"Failure mode effects and criticality analysis (FMECA) is widely employed across industries to recognize and reduce possible failures. Despite its extensive usage, FMECA encounters challenges in decision‐making. In this paper, a new fuzzy resilience‐based RPN model is created to develop the FMECA method. The fuzzy model transcends the limitations associated with traditional risk priority number calculations by incorporating factors beyond frequency, severity, and detection. This extension includes considerations impacting system cost, sustainability, and safety, providing a more comprehensive risk assessment. In addition, to create trust in decision‐makers, a robust assessment approach is suggested, integrating three methodologies. In the initial phase, the fuzzy analytical hierarchy process and the grey relation analysis method are used to determine the subjective weights of different risk factors and resolve the flaws associated with the deficiency of constructed fuzzy inference rules. In the second phase, an entropy method is applied to handle the uncertainty of individual weightage calculated and capture different conflicting experts' views. The suggested approach is validated through a case study involving a gas turbine. The results demonstrate significant differences in failure mode prioritization between different approaches. The introduction of MTTR addresses critical shortcomings in traditional FMECA, enhancing predictive capabilities. Furthermore, the hybrid approach improved criticality assessment and failure mode ranking, classifying failure modes into fifteen categories, aiding decision‐making, and applying appropriate risk mitigation measures. Overall, the findings validate the efficacy of the proposed approach in addressing uncertainties and divergent expert judgments for risk assessment in complex systems.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating fuzzy logic and multi‐criteria decision‐making in a hybrid FMECA for robust risk prioritization\",\"authors\":\"Ammar Chakhrit, Imene Djelamda, Mohammed Bougofa, Islam H. M. Guetarni, Abderraouf Bouafia, Mohammed Chennoufi\",\"doi\":\"10.1002/qre.3601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure mode effects and criticality analysis (FMECA) is widely employed across industries to recognize and reduce possible failures. Despite its extensive usage, FMECA encounters challenges in decision‐making. In this paper, a new fuzzy resilience‐based RPN model is created to develop the FMECA method. The fuzzy model transcends the limitations associated with traditional risk priority number calculations by incorporating factors beyond frequency, severity, and detection. This extension includes considerations impacting system cost, sustainability, and safety, providing a more comprehensive risk assessment. In addition, to create trust in decision‐makers, a robust assessment approach is suggested, integrating three methodologies. In the initial phase, the fuzzy analytical hierarchy process and the grey relation analysis method are used to determine the subjective weights of different risk factors and resolve the flaws associated with the deficiency of constructed fuzzy inference rules. In the second phase, an entropy method is applied to handle the uncertainty of individual weightage calculated and capture different conflicting experts' views. The suggested approach is validated through a case study involving a gas turbine. The results demonstrate significant differences in failure mode prioritization between different approaches. The introduction of MTTR addresses critical shortcomings in traditional FMECA, enhancing predictive capabilities. Furthermore, the hybrid approach improved criticality assessment and failure mode ranking, classifying failure modes into fifteen categories, aiding decision‐making, and applying appropriate risk mitigation measures. Overall, the findings validate the efficacy of the proposed approach in addressing uncertainties and divergent expert judgments for risk assessment in complex systems.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3601\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3601","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Integrating fuzzy logic and multi‐criteria decision‐making in a hybrid FMECA for robust risk prioritization
Failure mode effects and criticality analysis (FMECA) is widely employed across industries to recognize and reduce possible failures. Despite its extensive usage, FMECA encounters challenges in decision‐making. In this paper, a new fuzzy resilience‐based RPN model is created to develop the FMECA method. The fuzzy model transcends the limitations associated with traditional risk priority number calculations by incorporating factors beyond frequency, severity, and detection. This extension includes considerations impacting system cost, sustainability, and safety, providing a more comprehensive risk assessment. In addition, to create trust in decision‐makers, a robust assessment approach is suggested, integrating three methodologies. In the initial phase, the fuzzy analytical hierarchy process and the grey relation analysis method are used to determine the subjective weights of different risk factors and resolve the flaws associated with the deficiency of constructed fuzzy inference rules. In the second phase, an entropy method is applied to handle the uncertainty of individual weightage calculated and capture different conflicting experts' views. The suggested approach is validated through a case study involving a gas turbine. The results demonstrate significant differences in failure mode prioritization between different approaches. The introduction of MTTR addresses critical shortcomings in traditional FMECA, enhancing predictive capabilities. Furthermore, the hybrid approach improved criticality assessment and failure mode ranking, classifying failure modes into fifteen categories, aiding decision‐making, and applying appropriate risk mitigation measures. Overall, the findings validate the efficacy of the proposed approach in addressing uncertainties and divergent expert judgments for risk assessment in complex systems.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.