不完善维护下多故障原因系统的可靠性和可维护性评估

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Fatemeh Safaei, Sharareh Taghipour
{"title":"不完善维护下多故障原因系统的可靠性和可维护性评估","authors":"Fatemeh Safaei, Sharareh Taghipour","doi":"10.1002/qre.3595","DOIUrl":null,"url":null,"abstract":"Estimating the reliability and maintainability (R & M) parameters is crucial in various industrial applications. It serves purposes such as evaluating system performance and safety, minimising the risk and cost of potential failures, and designing efficient maintenance strategies. This task becomes challenging for complex repairable systems, where failures can occur due to different causes and performance may be affected by various covariates (such as material, environment, and labour). Another challenge in R & M studies arises from the presence of censorship in failure times. Existing methodologies often fail to account for all the aforementioned aspects of system‐related data in R & M analysis. By incorporating valuable information from covariates and utilising data from censored failure times alongside complete failure data, the accuracy of R & M parameter estimation can be significantly improved. This paper develops reliability models for repairable systems with multiple failure causes in the presence of covariates. The system can also be subject to imperfect maintenance. The R & M parameters are then estimated by applying the Kijima Type I and II model's virtual age concept. The proposed technique is illustrated using two case studies on gas pipelines and aero‐engine systems. Through these case studies, we show that the proposed method not only provides more efficient estimates of the R & M parameters compared to the alternative approach, but it is also easier to apply and yields more straightforward interpretations.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability and maintainability estimation of a multi‐failure‐cause system under imperfect maintenance\",\"authors\":\"Fatemeh Safaei, Sharareh Taghipour\",\"doi\":\"10.1002/qre.3595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the reliability and maintainability (R & M) parameters is crucial in various industrial applications. It serves purposes such as evaluating system performance and safety, minimising the risk and cost of potential failures, and designing efficient maintenance strategies. This task becomes challenging for complex repairable systems, where failures can occur due to different causes and performance may be affected by various covariates (such as material, environment, and labour). Another challenge in R & M studies arises from the presence of censorship in failure times. Existing methodologies often fail to account for all the aforementioned aspects of system‐related data in R & M analysis. By incorporating valuable information from covariates and utilising data from censored failure times alongside complete failure data, the accuracy of R & M parameter estimation can be significantly improved. This paper develops reliability models for repairable systems with multiple failure causes in the presence of covariates. The system can also be subject to imperfect maintenance. The R & M parameters are then estimated by applying the Kijima Type I and II model's virtual age concept. The proposed technique is illustrated using two case studies on gas pipelines and aero‐engine systems. Through these case studies, we show that the proposed method not only provides more efficient estimates of the R & M parameters compared to the alternative approach, but it is also easier to apply and yields more straightforward interpretations.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3595\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3595","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

在各种工业应用中,估算可靠性和可维护性(R & M)参数至关重要。它的作用包括评估系统性能和安全性,最大限度地降低潜在故障的风险和成本,以及设计高效的维护策略。对于复杂的可维护性系统来说,这项任务具有挑战性,因为发生故障的原因可能各不相同,系统性能也可能受到各种协变量(如材料、环境和劳动力)的影响。R & M 研究中的另一个挑战来自于故障时间的普查。现有的方法往往无法在 Ramp &; M 分析中考虑到系统相关数据的所有上述方面。通过将有价值的协变量信息纳入其中,并在利用完整故障数据的同时利用经过删减的故障时间数据,可以显著提高 R & M 参数估计的准确性。本文为存在协变量、具有多种故障原因的可修复系统建立了可靠性模型。系统还可能受到不完善维护的影响。然后应用 Kijima I 型和 II 型模型的虚拟年龄概念估算 R & M 参数。我们通过对天然气管道和航空发动机系统的两个案例研究来说明所提出的技术。通过这些案例研究,我们表明,与其他方法相比,拟议的方法不仅能更有效地估算 R & M 参数,而且更易于应用,并能产生更直接的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability and maintainability estimation of a multi‐failure‐cause system under imperfect maintenance
Estimating the reliability and maintainability (R & M) parameters is crucial in various industrial applications. It serves purposes such as evaluating system performance and safety, minimising the risk and cost of potential failures, and designing efficient maintenance strategies. This task becomes challenging for complex repairable systems, where failures can occur due to different causes and performance may be affected by various covariates (such as material, environment, and labour). Another challenge in R & M studies arises from the presence of censorship in failure times. Existing methodologies often fail to account for all the aforementioned aspects of system‐related data in R & M analysis. By incorporating valuable information from covariates and utilising data from censored failure times alongside complete failure data, the accuracy of R & M parameter estimation can be significantly improved. This paper develops reliability models for repairable systems with multiple failure causes in the presence of covariates. The system can also be subject to imperfect maintenance. The R & M parameters are then estimated by applying the Kijima Type I and II model's virtual age concept. The proposed technique is illustrated using two case studies on gas pipelines and aero‐engine systems. Through these case studies, we show that the proposed method not only provides more efficient estimates of the R & M parameters compared to the alternative approach, but it is also easier to apply and yields more straightforward interpretations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信