分数积分模型中的指数时间趋势

IF 1.1 Q3 ECONOMICS
Guglielmo Maria Caporale, Luis Alberiko Gil-Alana
{"title":"分数积分模型中的指数时间趋势","authors":"Guglielmo Maria Caporale, Luis Alberiko Gil-Alana","doi":"10.3390/econometrics12020015","DOIUrl":null,"url":null,"abstract":"This paper introduces a new modelling approach that incorporates nonlinear, exponential deterministic terms into a fractional integration framework. The proposed model is based on a specific test on fractional integration that is more general than the standard methods, which allow for only linear trends.. Its limiting distribution is standard normal, and Monte Carlo simulations show that it performs well in finite samples. Three empirical examples confirm that the suggested specification captures the properties of the data adequately.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"27 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Time Trends in a Fractional Integration Model\",\"authors\":\"Guglielmo Maria Caporale, Luis Alberiko Gil-Alana\",\"doi\":\"10.3390/econometrics12020015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new modelling approach that incorporates nonlinear, exponential deterministic terms into a fractional integration framework. The proposed model is based on a specific test on fractional integration that is more general than the standard methods, which allow for only linear trends.. Its limiting distribution is standard normal, and Monte Carlo simulations show that it performs well in finite samples. Three empirical examples confirm that the suggested specification captures the properties of the data adequately.\",\"PeriodicalId\":11499,\"journal\":{\"name\":\"Econometrics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/econometrics12020015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics12020015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的建模方法,它将非线性指数确定项纳入了分数积分框架。提出的模型基于对分数积分的特定检验,比只允许线性趋势的标准方法更通用。它的极限分布是标准正态分布,蒙特卡罗模拟表明它在有限样本中表现良好。三个经验实例证实,所建议的规范能充分捕捉数据的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Time Trends in a Fractional Integration Model
This paper introduces a new modelling approach that incorporates nonlinear, exponential deterministic terms into a fractional integration framework. The proposed model is based on a specific test on fractional integration that is more general than the standard methods, which allow for only linear trends.. Its limiting distribution is standard normal, and Monte Carlo simulations show that it performs well in finite samples. Three empirical examples confirm that the suggested specification captures the properties of the data adequately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信