基于量子的组合优化,实现民用建筑中传感器的最佳布置

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Gabriel San Martín, Enrique López Droguett
{"title":"基于量子的组合优化,实现民用建筑中传感器的最佳布置","authors":"Gabriel San Martín,&nbsp;Enrique López Droguett","doi":"10.1155/2024/6681342","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Over the last decade, concepts such as industry 4.0 and the Internet of Things (IoT) have contributed to the increase in the availability and affordability of sensing technology. In this context, structural health monitoring (SHM) arises as an especially interesting field to integrate and develop these new sensing capabilities, given the criticality of structural application for human life and the elevated costs of manual monitoring. Due to the scale of structural systems, one of the main challenges when designing a modern monitoring system is the optimal sensor placement (OSP) problem. The OSP problem is combinatorial in nature, making its exact solution infeasible in most practical cases, usually requiring the use of metaheuristic optimization techniques. While approaches such as genetic algorithms (GAs) have been able to produce significant results in many practical case studies, their ability to scale up to more complex structures is still an area of open research. This study proposes a novel quantum-based combinatorial optimization approach to solve the OSP problem approximately, within the context of SHM. For this purpose, a quadratic unconstrained binary optimization (QUBO) model formulation is developed, taking as a starting point of the modal strain energy (MSE) of the structure. The framework is tested using numerical simulations of Warren truss bridges of varying scales. The results obtained using the proposed framework are compared against exhaustive search approaches to verify their performance. More importantly, a detailed discussion of the current limitations of the technology and the future paths of research in the area is presented to the reader.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6681342","citationCount":"0","resultStr":"{\"title\":\"Quantum-Based Combinatorial Optimization for Optimal Sensor Placement in Civil Structures\",\"authors\":\"Gabriel San Martín,&nbsp;Enrique López Droguett\",\"doi\":\"10.1155/2024/6681342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Over the last decade, concepts such as industry 4.0 and the Internet of Things (IoT) have contributed to the increase in the availability and affordability of sensing technology. In this context, structural health monitoring (SHM) arises as an especially interesting field to integrate and develop these new sensing capabilities, given the criticality of structural application for human life and the elevated costs of manual monitoring. Due to the scale of structural systems, one of the main challenges when designing a modern monitoring system is the optimal sensor placement (OSP) problem. The OSP problem is combinatorial in nature, making its exact solution infeasible in most practical cases, usually requiring the use of metaheuristic optimization techniques. While approaches such as genetic algorithms (GAs) have been able to produce significant results in many practical case studies, their ability to scale up to more complex structures is still an area of open research. This study proposes a novel quantum-based combinatorial optimization approach to solve the OSP problem approximately, within the context of SHM. For this purpose, a quadratic unconstrained binary optimization (QUBO) model formulation is developed, taking as a starting point of the modal strain energy (MSE) of the structure. The framework is tested using numerical simulations of Warren truss bridges of varying scales. The results obtained using the proposed framework are compared against exhaustive search approaches to verify their performance. More importantly, a detailed discussion of the current limitations of the technology and the future paths of research in the area is presented to the reader.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6681342\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6681342\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6681342","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过去十年间,工业 4.0 和物联网(IoT)等概念促进了传感技术可用性和经济性的提高。在此背景下,结构健康监测(SHM)成为一个特别值得整合和开发这些新传感功能的领域,因为结构应用对人类生活至关重要,而人工监测成本高昂。由于结构系统规模庞大,设计现代监测系统时面临的主要挑战之一就是传感器的最佳放置(OSP)问题。OSP 问题具有组合性,因此在大多数实际情况下都无法精确求解,通常需要使用元启发式优化技术。虽然遗传算法(GA)等方法已在许多实际案例研究中取得了显著成果,但其扩展到更复杂结构的能力仍是一个有待研究的领域。本研究提出了一种新颖的基于量子的组合优化方法,以近似解决 SHM 背景下的 OSP 问题。为此,以结构的模态应变能(MSE)为起点,开发了二次无约束二元优化(QUBO)模型公式。通过对不同规模的沃伦桁架桥进行数值模拟,对该框架进行了测试。使用所提出的框架获得的结果与穷举搜索方法进行了比较,以验证其性能。更重要的是,还向读者详细讨论了该技术目前的局限性以及该领域未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum-Based Combinatorial Optimization for Optimal Sensor Placement in Civil Structures

Quantum-Based Combinatorial Optimization for Optimal Sensor Placement in Civil Structures

Over the last decade, concepts such as industry 4.0 and the Internet of Things (IoT) have contributed to the increase in the availability and affordability of sensing technology. In this context, structural health monitoring (SHM) arises as an especially interesting field to integrate and develop these new sensing capabilities, given the criticality of structural application for human life and the elevated costs of manual monitoring. Due to the scale of structural systems, one of the main challenges when designing a modern monitoring system is the optimal sensor placement (OSP) problem. The OSP problem is combinatorial in nature, making its exact solution infeasible in most practical cases, usually requiring the use of metaheuristic optimization techniques. While approaches such as genetic algorithms (GAs) have been able to produce significant results in many practical case studies, their ability to scale up to more complex structures is still an area of open research. This study proposes a novel quantum-based combinatorial optimization approach to solve the OSP problem approximately, within the context of SHM. For this purpose, a quadratic unconstrained binary optimization (QUBO) model formulation is developed, taking as a starting point of the modal strain energy (MSE) of the structure. The framework is tested using numerical simulations of Warren truss bridges of varying scales. The results obtained using the proposed framework are compared against exhaustive search approaches to verify their performance. More importantly, a detailed discussion of the current limitations of the technology and the future paths of research in the area is presented to the reader.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信