澳大利亚东海岸前所未有的极端降雨的多模型可能性分析

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Damien B. Irving, James S. Risbey, Dougal T. Squire, Richard Matear, Carly Tozer, Didier P. Monselesan, Nandini Ramesh, P. Jyoteeshkumar Reddy, Mandy Freund
{"title":"澳大利亚东海岸前所未有的极端降雨的多模型可能性分析","authors":"Damien B. Irving,&nbsp;James S. Risbey,&nbsp;Dougal T. Squire,&nbsp;Richard Matear,&nbsp;Carly Tozer,&nbsp;Didier P. Monselesan,&nbsp;Nandini Ramesh,&nbsp;P. Jyoteeshkumar Reddy,&nbsp;Mandy Freund","doi":"10.1002/met.2217","DOIUrl":null,"url":null,"abstract":"<p>A large stretch of the east coast of Australia experienced unprecedented rainfall and flooding over a two-week period in early 2022. It is difficult to reliably estimate the likelihood of such a rare event from the relatively short observational record, so an alternative is to use data from an ensemble prediction system (e.g., a seasonal or decadal forecast system) to obtain a much larger sample of simulated weather events. This so-called ‘UNSEEN’ method has been successfully applied in several scientific studies, but those studies typically rely on a single prediction system. In this study, we use data from the Decadal Climate Prediction Project to explore the model uncertainty associated with the UNSEEN method by assessing 10 different hindcast ensembles. Using the 15-day rainfall total averaged over the river catchments impacted by the 2022 east coast event, we find that the models produce a wide range of likelihood estimates. Even after excluding a number of models that fail basic fidelity tests, estimates of the event return period ranged from 320 to 1814 years. The vast majority of models suggested the event is rarer than a standard extreme value assessment of the observational record (297 years). Such large model uncertainty suggests that multi-model analysis should become part of the standard UNSEEN procedure.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2217","citationCount":"0","resultStr":"{\"title\":\"A multi-model likelihood analysis of unprecedented extreme rainfall along the east coast of Australia\",\"authors\":\"Damien B. Irving,&nbsp;James S. Risbey,&nbsp;Dougal T. Squire,&nbsp;Richard Matear,&nbsp;Carly Tozer,&nbsp;Didier P. Monselesan,&nbsp;Nandini Ramesh,&nbsp;P. Jyoteeshkumar Reddy,&nbsp;Mandy Freund\",\"doi\":\"10.1002/met.2217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A large stretch of the east coast of Australia experienced unprecedented rainfall and flooding over a two-week period in early 2022. It is difficult to reliably estimate the likelihood of such a rare event from the relatively short observational record, so an alternative is to use data from an ensemble prediction system (e.g., a seasonal or decadal forecast system) to obtain a much larger sample of simulated weather events. This so-called ‘UNSEEN’ method has been successfully applied in several scientific studies, but those studies typically rely on a single prediction system. In this study, we use data from the Decadal Climate Prediction Project to explore the model uncertainty associated with the UNSEEN method by assessing 10 different hindcast ensembles. Using the 15-day rainfall total averaged over the river catchments impacted by the 2022 east coast event, we find that the models produce a wide range of likelihood estimates. Even after excluding a number of models that fail basic fidelity tests, estimates of the event return period ranged from 320 to 1814 years. The vast majority of models suggested the event is rarer than a standard extreme value assessment of the observational record (297 years). Such large model uncertainty suggests that multi-model analysis should become part of the standard UNSEEN procedure.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"31 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.2217\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/met.2217\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.2217","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2022 年初,澳大利亚东海岸的大片地区在两周内经历了前所未有的降雨和洪水。从相对较短的观测记录中很难可靠地估算出这种罕见事件发生的可能性,因此另一种方法是使用集合预报系统(如季节或十年预报系统)的数据来获得更大的模拟天气事件样本。这种所谓的 "UNSEEN "方法已成功应用于多项科学研究,但这些研究通常依赖于单一的预测系统。在本研究中,我们利用十年气候预测项目的数据,通过评估 10 个不同的后报集合,探索与 UNSEEN 方法相关的模型不确定性。利用受 2022 年东海岸事件影响的河流流域的 15 天降雨总量平均值,我们发现模型产生的可能性估计值范围很广。即使排除了一些未能通过基本保真度测试的模型,事件回归期的估计值也从 320 年到 1814 年不等。绝大多数模型都认为该事件比观测记录的标准极值评估(297 年)更罕见。如此大的模型不确定性表明,多模型分析应成为 UNSEEN 标准程序的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A multi-model likelihood analysis of unprecedented extreme rainfall along the east coast of Australia

A multi-model likelihood analysis of unprecedented extreme rainfall along the east coast of Australia

A large stretch of the east coast of Australia experienced unprecedented rainfall and flooding over a two-week period in early 2022. It is difficult to reliably estimate the likelihood of such a rare event from the relatively short observational record, so an alternative is to use data from an ensemble prediction system (e.g., a seasonal or decadal forecast system) to obtain a much larger sample of simulated weather events. This so-called ‘UNSEEN’ method has been successfully applied in several scientific studies, but those studies typically rely on a single prediction system. In this study, we use data from the Decadal Climate Prediction Project to explore the model uncertainty associated with the UNSEEN method by assessing 10 different hindcast ensembles. Using the 15-day rainfall total averaged over the river catchments impacted by the 2022 east coast event, we find that the models produce a wide range of likelihood estimates. Even after excluding a number of models that fail basic fidelity tests, estimates of the event return period ranged from 320 to 1814 years. The vast majority of models suggested the event is rarer than a standard extreme value assessment of the observational record (297 years). Such large model uncertainty suggests that multi-model analysis should become part of the standard UNSEEN procedure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信