{"title":"扩散-对流-反应问题的 CIP 稳定虚拟元素","authors":"L Beirão da Veiga, C Lovadina, M Trezzi","doi":"10.1093/imanum/drae020","DOIUrl":null,"url":null,"abstract":"The Virtual Element Method (VEM) for diffusion-convection-reaction problems is considered. In order to design a quasi-robust scheme also in the convection-dominated regime, a Continuous Interior Penalty approach is employed. Due to the presence of polynomial projection operators, typical of the VEM, the stability and the error analysis requires particular care—especially in treating the advective term. Some numerical tests are presented to support the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CIP-stabilized virtual elements for diffusion-convection-reaction problems\",\"authors\":\"L Beirão da Veiga, C Lovadina, M Trezzi\",\"doi\":\"10.1093/imanum/drae020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Virtual Element Method (VEM) for diffusion-convection-reaction problems is considered. In order to design a quasi-robust scheme also in the convection-dominated regime, a Continuous Interior Penalty approach is employed. Due to the presence of polynomial projection operators, typical of the VEM, the stability and the error analysis requires particular care—especially in treating the advective term. Some numerical tests are presented to support the theoretical results.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae020\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
CIP-stabilized virtual elements for diffusion-convection-reaction problems
The Virtual Element Method (VEM) for diffusion-convection-reaction problems is considered. In order to design a quasi-robust scheme also in the convection-dominated regime, a Continuous Interior Penalty approach is employed. Due to the presence of polynomial projection operators, typical of the VEM, the stability and the error analysis requires particular care—especially in treating the advective term. Some numerical tests are presented to support the theoretical results.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.