{"title":"通过 de Bruijn 图增强带有计数器的 k-Mer 集的压缩。","authors":"Enrico Rossignolo, Matteo Comin","doi":"10.1089/cmb.2024.0530","DOIUrl":null,"url":null,"abstract":"<p><p>An essential task in computational genomics involves transforming input sequences into their constituent <i>k</i>-mers. The quest for an efficient representation of <i>k</i>-mer sets is crucial for enhancing the scalability of bioinformatic analyses. One widely used method involves converting the <i>k</i>-mer set into a de Bruijn graph (dBG), followed by seeking a compact graph representation via the smallest path cover. This study introduces USTAR* (Unitig STitch Advanced constRuction), a tool designed to compress both a set of <i>k</i>-mers and their associated counts. USTAR leverages the connectivity and density of dBGs, enabling a more efficient path selection for constructing the path cover. The efficacy of USTAR is demonstrated through its application in compressing real read data sets. USTAR improves the compression achieved by UST (Unitig STitch), the best algorithm, by percentages ranging from 2.3% to 26.4%, depending on the <i>k</i>-mer size, and it is up to <math><mn>7</mn><mo>×</mo></math> times faster.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"524-538"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Compression of <i>k</i>-Mer Sets with Counters via de Bruijn Graphs.\",\"authors\":\"Enrico Rossignolo, Matteo Comin\",\"doi\":\"10.1089/cmb.2024.0530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An essential task in computational genomics involves transforming input sequences into their constituent <i>k</i>-mers. The quest for an efficient representation of <i>k</i>-mer sets is crucial for enhancing the scalability of bioinformatic analyses. One widely used method involves converting the <i>k</i>-mer set into a de Bruijn graph (dBG), followed by seeking a compact graph representation via the smallest path cover. This study introduces USTAR* (Unitig STitch Advanced constRuction), a tool designed to compress both a set of <i>k</i>-mers and their associated counts. USTAR leverages the connectivity and density of dBGs, enabling a more efficient path selection for constructing the path cover. The efficacy of USTAR is demonstrated through its application in compressing real read data sets. USTAR improves the compression achieved by UST (Unitig STitch), the best algorithm, by percentages ranging from 2.3% to 26.4%, depending on the <i>k</i>-mer size, and it is up to <math><mn>7</mn><mo>×</mo></math> times faster.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"524-538\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0530\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0530","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhanced Compression of k-Mer Sets with Counters via de Bruijn Graphs.
An essential task in computational genomics involves transforming input sequences into their constituent k-mers. The quest for an efficient representation of k-mer sets is crucial for enhancing the scalability of bioinformatic analyses. One widely used method involves converting the k-mer set into a de Bruijn graph (dBG), followed by seeking a compact graph representation via the smallest path cover. This study introduces USTAR* (Unitig STitch Advanced constRuction), a tool designed to compress both a set of k-mers and their associated counts. USTAR leverages the connectivity and density of dBGs, enabling a more efficient path selection for constructing the path cover. The efficacy of USTAR is demonstrated through its application in compressing real read data sets. USTAR improves the compression achieved by UST (Unitig STitch), the best algorithm, by percentages ranging from 2.3% to 26.4%, depending on the k-mer size, and it is up to times faster.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases