用于 LLR-ℏ-PREINVEX 变量间函数的新的差分内部不等式

Fractals Pub Date : 2024-05-29 DOI:10.1142/s0218348x2450083x
YUN TAN, DAFANG ZHAO
{"title":"用于 LLR-ℏ-PREINVEX 变量间函数的新的差分内部不等式","authors":"YUN TAN, DAFANG ZHAO","doi":"10.1142/s0218348x2450083x","DOIUrl":null,"url":null,"abstract":"<p>Based on the pseudo-order relation, we introduce the concept of left and right <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>ℏ</mi></math></span><span></span>-preinvex interval-valued functions (LR-<span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>ℏ</mi></math></span><span></span>-PIVFs). Further, we establish the Hermite–Hadamard and Hermite–Hadamard–Fejér-type estimates for LR-<span><math altimg=\"eq-00005.gif\" display=\"inline\"><mi>ℏ</mi></math></span><span></span>-PIVFs using generalized fractional integrals. Finally, an example of interval-valued fractional integrals is provided to illustrate the validity of the results derived herein. Our results not only extend some existing inequalities for Hadamard, Riemann–Liouville, and Katugampola fractional integrals, but also provide new insights for future research on generalized convexity and IVFs, among others.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEW FRACTIONAL INTEGRAL INEQUALITIES FORLR-ℏ-PREINVEX INTERVAL-VALUED FUNCTIONS\",\"authors\":\"YUN TAN, DAFANG ZHAO\",\"doi\":\"10.1142/s0218348x2450083x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on the pseudo-order relation, we introduce the concept of left and right <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\"><mi>ℏ</mi></math></span><span></span>-preinvex interval-valued functions (LR-<span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\"><mi>ℏ</mi></math></span><span></span>-PIVFs). Further, we establish the Hermite–Hadamard and Hermite–Hadamard–Fejér-type estimates for LR-<span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\"><mi>ℏ</mi></math></span><span></span>-PIVFs using generalized fractional integrals. Finally, an example of interval-valued fractional integrals is provided to illustrate the validity of the results derived herein. Our results not only extend some existing inequalities for Hadamard, Riemann–Liouville, and Katugampola fractional integrals, but also provide new insights for future research on generalized convexity and IVFs, among others.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x2450083x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x2450083x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于伪阶关系,我们引入了左右ℏ-前凸区间值函数(LR-ℏ-PIVFs)的概念。此外,我们还利用广义分数积分建立了 LR-ℏ-PIVF 的 Hermite-Hadamard 和 Hermite-Hadamard-Fejér 型估计。最后,我们提供了一个区间值分数积分的例子,以说明本文所推导结果的有效性。我们的结果不仅扩展了哈达玛、黎曼-刘维尔和卡图甘波拉分数积分的一些现有不等式,而且为广义凸性和 IVF 等方面的未来研究提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NEW FRACTIONAL INTEGRAL INEQUALITIES FORLR-ℏ-PREINVEX INTERVAL-VALUED FUNCTIONS

Based on the pseudo-order relation, we introduce the concept of left and right -preinvex interval-valued functions (LR--PIVFs). Further, we establish the Hermite–Hadamard and Hermite–Hadamard–Fejér-type estimates for LR--PIVFs using generalized fractional integrals. Finally, an example of interval-valued fractional integrals is provided to illustrate the validity of the results derived herein. Our results not only extend some existing inequalities for Hadamard, Riemann–Liouville, and Katugampola fractional integrals, but also provide new insights for future research on generalized convexity and IVFs, among others.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信