用于氧进化反应的 Y2(YxRu1-x)2O7-δ吡咯晶体电催化剂成分和价带中心的缺陷工程设计

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bidipta Ghosh, Cheng Zhang, Stefanie Frick, En Ju Cho, Toby Woods, Yujie Yang, Nicola H. Perry, Andreas Klein and Hong Yang*, 
{"title":"用于氧进化反应的 Y2(YxRu1-x)2O7-δ吡咯晶体电催化剂成分和价带中心的缺陷工程设计","authors":"Bidipta Ghosh,&nbsp;Cheng Zhang,&nbsp;Stefanie Frick,&nbsp;En Ju Cho,&nbsp;Toby Woods,&nbsp;Yujie Yang,&nbsp;Nicola H. Perry,&nbsp;Andreas Klein and Hong Yang*,&nbsp;","doi":"10.1021/jacs.4c04292","DOIUrl":null,"url":null,"abstract":"<p >Oxygen evolution reaction (OER) takes place in various types of electrochemical devices that are pivotal for the conversion and storage of renewable energy. This paper describes a strategy in the design of solid-state structures of OER electrocatalysts through controlling the cation substitution on the active metal site and consequently valence band center position of site-mixed Y<sub>2</sub>(Y<sub><i>x</i></sub>Ru<sub>1–<i>x</i></sub>)<sub>2</sub>O<sub>7−δ</sub> pyrochlore to achieve high catalytic activity. We found that partially replacing the B-site Ru<sup>4+</sup> cation with A-site Y<sup>3+</sup> in pyrochlore-structured Y<sub>2</sub>Ru<sub>2</sub>O<sub>7−δ</sub> modifies the oxidation state of B-site Ru from 4<sup>+</sup> to 5<sup>+</sup>, as observed by electron paramagnetic resonance (EPR) spectroscopy but does not continuously increase the oxygen vacancy concentration in these oxygen substoichiometric compositions, as quantified by thermogravimetric analysis (TGA) decomposition studies. We found the increased Ru oxidation state leads to a downshift in valence band center. X-ray photoelectron spectroscopy (XPS) analysis was performed to quantitatively determine the optimal band center to be ∼1.27 eV below the Fermi energy level based on the analysis of the valence band edge of these Ru-based Y<sub>2</sub>(Y<sub><i>x</i></sub>Ru<sub>1–<i>x</i></sub>)<sub>2</sub>O<sub>7−δ</sub> OER electrocatalysts. This work highlights that defect engineering can be a practical, effective approach to the optimization of oxidation state and electronic band center for high OER catalytic performance in a quantitative manner.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 27","pages":"18524–18534"},"PeriodicalIF":15.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Engineering in Composition and Valence Band Center of Y2(YxRu1–x)2O7−δ Pyrochlore Electrocatalysts for Oxygen Evolution Reaction\",\"authors\":\"Bidipta Ghosh,&nbsp;Cheng Zhang,&nbsp;Stefanie Frick,&nbsp;En Ju Cho,&nbsp;Toby Woods,&nbsp;Yujie Yang,&nbsp;Nicola H. Perry,&nbsp;Andreas Klein and Hong Yang*,&nbsp;\",\"doi\":\"10.1021/jacs.4c04292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Oxygen evolution reaction (OER) takes place in various types of electrochemical devices that are pivotal for the conversion and storage of renewable energy. This paper describes a strategy in the design of solid-state structures of OER electrocatalysts through controlling the cation substitution on the active metal site and consequently valence band center position of site-mixed Y<sub>2</sub>(Y<sub><i>x</i></sub>Ru<sub>1–<i>x</i></sub>)<sub>2</sub>O<sub>7−δ</sub> pyrochlore to achieve high catalytic activity. We found that partially replacing the B-site Ru<sup>4+</sup> cation with A-site Y<sup>3+</sup> in pyrochlore-structured Y<sub>2</sub>Ru<sub>2</sub>O<sub>7−δ</sub> modifies the oxidation state of B-site Ru from 4<sup>+</sup> to 5<sup>+</sup>, as observed by electron paramagnetic resonance (EPR) spectroscopy but does not continuously increase the oxygen vacancy concentration in these oxygen substoichiometric compositions, as quantified by thermogravimetric analysis (TGA) decomposition studies. We found the increased Ru oxidation state leads to a downshift in valence band center. X-ray photoelectron spectroscopy (XPS) analysis was performed to quantitatively determine the optimal band center to be ∼1.27 eV below the Fermi energy level based on the analysis of the valence band edge of these Ru-based Y<sub>2</sub>(Y<sub><i>x</i></sub>Ru<sub>1–<i>x</i></sub>)<sub>2</sub>O<sub>7−δ</sub> OER electrocatalysts. This work highlights that defect engineering can be a practical, effective approach to the optimization of oxidation state and electronic band center for high OER catalytic performance in a quantitative manner.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 27\",\"pages\":\"18524–18534\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c04292\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c04292","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧进化反应(OER)发生在各类电化学装置中,对可再生能源的转化和储存至关重要。本文介绍了一种通过控制 Y2(YxRu1-x)2O7-δ 烧绿宝石的活性金属位点上的阳离子置换以及价带中心位置来实现高催化活性的 OER 电催化剂固态结构设计策略。我们发现,根据电子顺磁共振(EPR)光谱的观察,在热绿宝石结构的 Y2Ru2O7-δ 中,用 A 位 Y3+ 部分取代 B 位 Ru4+ 阳离子会改变 B 位 Ru 的氧化态,使其从 4+ 变为 5+,但根据热重分析(TGA)分解研究的量化结果,这些氧亚计量成分中的氧空位浓度并没有持续增加。我们发现,Ru 氧化态的增加导致价带中心下移。根据对这些 Ru 基 Y2(YxRu1-x)2O7-δ OER 电催化剂价带边缘的分析,我们进行了 X 射线光电子能谱 (XPS) 分析,定量确定了最佳价带中心为费米能级以下 1.27 eV。这项工作突出表明,缺陷工程是优化氧化态和电子能带中心的一种实用、有效的方法,可以定量地提高 OER 催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Defect Engineering in Composition and Valence Band Center of Y2(YxRu1–x)2O7−δ Pyrochlore Electrocatalysts for Oxygen Evolution Reaction

Defect Engineering in Composition and Valence Band Center of Y2(YxRu1–x)2O7−δ Pyrochlore Electrocatalysts for Oxygen Evolution Reaction

Defect Engineering in Composition and Valence Band Center of Y2(YxRu1–x)2O7−δ Pyrochlore Electrocatalysts for Oxygen Evolution Reaction

Oxygen evolution reaction (OER) takes place in various types of electrochemical devices that are pivotal for the conversion and storage of renewable energy. This paper describes a strategy in the design of solid-state structures of OER electrocatalysts through controlling the cation substitution on the active metal site and consequently valence band center position of site-mixed Y2(YxRu1–x)2O7−δ pyrochlore to achieve high catalytic activity. We found that partially replacing the B-site Ru4+ cation with A-site Y3+ in pyrochlore-structured Y2Ru2O7−δ modifies the oxidation state of B-site Ru from 4+ to 5+, as observed by electron paramagnetic resonance (EPR) spectroscopy but does not continuously increase the oxygen vacancy concentration in these oxygen substoichiometric compositions, as quantified by thermogravimetric analysis (TGA) decomposition studies. We found the increased Ru oxidation state leads to a downshift in valence band center. X-ray photoelectron spectroscopy (XPS) analysis was performed to quantitatively determine the optimal band center to be ∼1.27 eV below the Fermi energy level based on the analysis of the valence band edge of these Ru-based Y2(YxRu1–x)2O7−δ OER electrocatalysts. This work highlights that defect engineering can be a practical, effective approach to the optimization of oxidation state and electronic band center for high OER catalytic performance in a quantitative manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信