设计和鉴定 LuSEE-Night 星上光谱仪的工程模型

IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Radio Science Pub Date : 2024-03-30 DOI:10.1029/2023RS007925
Emi Tamura;Jack Fried;Sven Herrmann;Paul O'Connor;Eric J. Raguzin;Anze Slosar
{"title":"设计和鉴定 LuSEE-Night 星上光谱仪的工程模型","authors":"Emi Tamura;Jack Fried;Sven Herrmann;Paul O'Connor;Eric J. Raguzin;Anze Slosar","doi":"10.1029/2023RS007925","DOIUrl":null,"url":null,"abstract":"The Lunar Surface Electromagnetics Explorer—Night, LuSEE-Night, is a low-frequency radio astronomy experiment that will explore the cosmic Dark Ages signal on the radio-quiet farside of the Moon. The LuSEE-Night carries a radio frequency spectrometer consisting of a set of antennas, analog and digital processing electronics, and will be launched by NASA's Commercial Lunar Payload Services in 2025. The spectrometer is designed to observe the spectrum of the radio sky in the 0.5–50 MHz band. The engineering model (EM) of the four-channel spectrometer has been developed. The EM has been characterized for linearity, gain, noise, and their temperature dependence, confirming that the EM meets all the requirements for LuSEE-Night. Three mitigation techniques have been implemented and verified to suppress self-induced electromagnetic interference. The flight model of the spectrometer is currently being developed and is scheduled to be shipped to the integration site in early 2024.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 5","pages":"1-20"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and characterization of the engineering model of the spectrometer onboard LuSEE-Night\",\"authors\":\"Emi Tamura;Jack Fried;Sven Herrmann;Paul O'Connor;Eric J. Raguzin;Anze Slosar\",\"doi\":\"10.1029/2023RS007925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lunar Surface Electromagnetics Explorer—Night, LuSEE-Night, is a low-frequency radio astronomy experiment that will explore the cosmic Dark Ages signal on the radio-quiet farside of the Moon. The LuSEE-Night carries a radio frequency spectrometer consisting of a set of antennas, analog and digital processing electronics, and will be launched by NASA's Commercial Lunar Payload Services in 2025. The spectrometer is designed to observe the spectrum of the radio sky in the 0.5–50 MHz band. The engineering model (EM) of the four-channel spectrometer has been developed. The EM has been characterized for linearity, gain, noise, and their temperature dependence, confirming that the EM meets all the requirements for LuSEE-Night. Three mitigation techniques have been implemented and verified to suppress self-induced electromagnetic interference. The flight model of the spectrometer is currently being developed and is scheduled to be shipped to the integration site in early 2024.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 5\",\"pages\":\"1-20\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10542683/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10542683/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

月球表面电磁学探索者之夜(LuSEE-Night)是一项低频射电天文学实验,将在无线电静默的月球远端探索宇宙黑暗时代的信号。LuSEE-Night携带一个射频频谱仪,由一组天线、模拟和数字处理电子设备组成,将于2025年由美国宇航局的商业月球有效载荷服务发射。该频谱仪旨在观测 0.5-50 兆赫频段的射电天空频谱。四通道光谱仪的工程模型(EM)已经开发出来。已对工程模型的线性度、增益、噪声及其温度依赖性进行了鉴定,确认工程模型符合 LuSEE-Night 的所有要求。为抑制自发电磁干扰,实施并验证了三种缓解技术。目前正在开发分光计的飞行模型,计划于 2024 年初运往集成地点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and characterization of the engineering model of the spectrometer onboard LuSEE-Night
The Lunar Surface Electromagnetics Explorer—Night, LuSEE-Night, is a low-frequency radio astronomy experiment that will explore the cosmic Dark Ages signal on the radio-quiet farside of the Moon. The LuSEE-Night carries a radio frequency spectrometer consisting of a set of antennas, analog and digital processing electronics, and will be launched by NASA's Commercial Lunar Payload Services in 2025. The spectrometer is designed to observe the spectrum of the radio sky in the 0.5–50 MHz band. The engineering model (EM) of the four-channel spectrometer has been developed. The EM has been characterized for linearity, gain, noise, and their temperature dependence, confirming that the EM meets all the requirements for LuSEE-Night. Three mitigation techniques have been implemented and verified to suppress self-induced electromagnetic interference. The flight model of the spectrometer is currently being developed and is scheduled to be shipped to the integration site in early 2024.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信