Emi Tamura;Jack Fried;Sven Herrmann;Paul O'Connor;Eric J. Raguzin;Anze Slosar
{"title":"设计和鉴定 LuSEE-Night 星上光谱仪的工程模型","authors":"Emi Tamura;Jack Fried;Sven Herrmann;Paul O'Connor;Eric J. Raguzin;Anze Slosar","doi":"10.1029/2023RS007925","DOIUrl":null,"url":null,"abstract":"The Lunar Surface Electromagnetics Explorer—Night, LuSEE-Night, is a low-frequency radio astronomy experiment that will explore the cosmic Dark Ages signal on the radio-quiet farside of the Moon. The LuSEE-Night carries a radio frequency spectrometer consisting of a set of antennas, analog and digital processing electronics, and will be launched by NASA's Commercial Lunar Payload Services in 2025. The spectrometer is designed to observe the spectrum of the radio sky in the 0.5–50 MHz band. The engineering model (EM) of the four-channel spectrometer has been developed. The EM has been characterized for linearity, gain, noise, and their temperature dependence, confirming that the EM meets all the requirements for LuSEE-Night. Three mitigation techniques have been implemented and verified to suppress self-induced electromagnetic interference. The flight model of the spectrometer is currently being developed and is scheduled to be shipped to the integration site in early 2024.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 5","pages":"1-20"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and characterization of the engineering model of the spectrometer onboard LuSEE-Night\",\"authors\":\"Emi Tamura;Jack Fried;Sven Herrmann;Paul O'Connor;Eric J. Raguzin;Anze Slosar\",\"doi\":\"10.1029/2023RS007925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lunar Surface Electromagnetics Explorer—Night, LuSEE-Night, is a low-frequency radio astronomy experiment that will explore the cosmic Dark Ages signal on the radio-quiet farside of the Moon. The LuSEE-Night carries a radio frequency spectrometer consisting of a set of antennas, analog and digital processing electronics, and will be launched by NASA's Commercial Lunar Payload Services in 2025. The spectrometer is designed to observe the spectrum of the radio sky in the 0.5–50 MHz band. The engineering model (EM) of the four-channel spectrometer has been developed. The EM has been characterized for linearity, gain, noise, and their temperature dependence, confirming that the EM meets all the requirements for LuSEE-Night. Three mitigation techniques have been implemented and verified to suppress self-induced electromagnetic interference. The flight model of the spectrometer is currently being developed and is scheduled to be shipped to the integration site in early 2024.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 5\",\"pages\":\"1-20\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10542683/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10542683/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Design and characterization of the engineering model of the spectrometer onboard LuSEE-Night
The Lunar Surface Electromagnetics Explorer—Night, LuSEE-Night, is a low-frequency radio astronomy experiment that will explore the cosmic Dark Ages signal on the radio-quiet farside of the Moon. The LuSEE-Night carries a radio frequency spectrometer consisting of a set of antennas, analog and digital processing electronics, and will be launched by NASA's Commercial Lunar Payload Services in 2025. The spectrometer is designed to observe the spectrum of the radio sky in the 0.5–50 MHz band. The engineering model (EM) of the four-channel spectrometer has been developed. The EM has been characterized for linearity, gain, noise, and their temperature dependence, confirming that the EM meets all the requirements for LuSEE-Night. Three mitigation techniques have been implemented and verified to suppress self-induced electromagnetic interference. The flight model of the spectrometer is currently being developed and is scheduled to be shipped to the integration site in early 2024.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.