鲁棒性半监督学习的三重适应框架

Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, Xilin Chen
{"title":"鲁棒性半监督学习的三重适应框架","authors":"Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, Xilin Chen","doi":"10.1109/TPAMI.2024.3404450","DOIUrl":null,"url":null,"abstract":"<p><p>Semi-supervised learning (SSL) suffers from severe performance degradation when labeled and unlabeled data come from inconsistent and imbalanced distribution. Nonetheless, there is a lack of theoretical guidance regarding a remedy for this issue. To bridge the gap between theoretical insights and practical solutions, we embark to an analysis of generalization bound of classic SSL algorithms. This analysis reveals that distribution inconsistency between unlabeled and labeled data can cause a significant generalization error bound. Motivated by this theoretical insight, we present a Triplet Adaptation Framework (TAF) to reduce the distribution divergence and improve the generalization of SSL models. TAF comprises three adapters: Balanced Residual Adapter, aiming to map the class distribution of labeled and unlabeled data to a uniform distribution for reducing class distribution divergence; Representation Adapter, aiming to map the representation distribution of unlabeled data to labeled one for reducing representation distribution divergence; and Pseudo-Label Adapter, aiming to align the predicted pseudo-labels with the class distribution of unlabeled data, thereby preventing erroneous pseudo-labels from exacerbating representation divergence. These three adapters collaborate synergistically to reduce the generalization bound, ultimately achieving a more robust and generalizable SSL model. Extensive experiments across various robust SSL scenarios validate the efficacy of our method.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triplet Adaptation Framework for Robust Semi-Supervised Learning.\",\"authors\":\"Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, Xilin Chen\",\"doi\":\"10.1109/TPAMI.2024.3404450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Semi-supervised learning (SSL) suffers from severe performance degradation when labeled and unlabeled data come from inconsistent and imbalanced distribution. Nonetheless, there is a lack of theoretical guidance regarding a remedy for this issue. To bridge the gap between theoretical insights and practical solutions, we embark to an analysis of generalization bound of classic SSL algorithms. This analysis reveals that distribution inconsistency between unlabeled and labeled data can cause a significant generalization error bound. Motivated by this theoretical insight, we present a Triplet Adaptation Framework (TAF) to reduce the distribution divergence and improve the generalization of SSL models. TAF comprises three adapters: Balanced Residual Adapter, aiming to map the class distribution of labeled and unlabeled data to a uniform distribution for reducing class distribution divergence; Representation Adapter, aiming to map the representation distribution of unlabeled data to labeled one for reducing representation distribution divergence; and Pseudo-Label Adapter, aiming to align the predicted pseudo-labels with the class distribution of unlabeled data, thereby preventing erroneous pseudo-labels from exacerbating representation divergence. These three adapters collaborate synergistically to reduce the generalization bound, ultimately achieving a more robust and generalizable SSL model. Extensive experiments across various robust SSL scenarios validate the efficacy of our method.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2024.3404450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3404450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当标注数据和未标注数据分布不一致、不平衡时,半监督学习(SSL)的性能就会严重下降。然而,目前还缺乏解决这一问题的理论指导。为了弥补理论见解与实际解决方案之间的差距,我们开始分析经典 SSL 算法的泛化边界。分析结果表明,未标记数据和已标记数据之间的分布不一致会导致显著的泛化误差约束。受此理论启发,我们提出了三重适配框架(TAF),以减少分布分歧,提高 SSL 模型的泛化能力。TAF 由三个适配器组成:平衡残差适配器(Balanced Residual Adapter),旨在将已标注和未标注数据的类分布映射为均匀分布,以减少类分布发散;表征适配器(Representation Adapter),旨在将未标注数据的表征分布映射为已标注数据的表征分布,以减少表征分布发散;伪标签适配器(Pseudo-Label Adapter),旨在使预测的伪标签与未标注数据的类分布保持一致,从而防止错误的伪标签加剧表征发散。这三个适配器协同合作,降低了泛化边界,最终实现了更加稳健和可泛化的 SSL 模型。在各种鲁棒 SSL 场景中进行的大量实验验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triplet Adaptation Framework for Robust Semi-Supervised Learning.

Semi-supervised learning (SSL) suffers from severe performance degradation when labeled and unlabeled data come from inconsistent and imbalanced distribution. Nonetheless, there is a lack of theoretical guidance regarding a remedy for this issue. To bridge the gap between theoretical insights and practical solutions, we embark to an analysis of generalization bound of classic SSL algorithms. This analysis reveals that distribution inconsistency between unlabeled and labeled data can cause a significant generalization error bound. Motivated by this theoretical insight, we present a Triplet Adaptation Framework (TAF) to reduce the distribution divergence and improve the generalization of SSL models. TAF comprises three adapters: Balanced Residual Adapter, aiming to map the class distribution of labeled and unlabeled data to a uniform distribution for reducing class distribution divergence; Representation Adapter, aiming to map the representation distribution of unlabeled data to labeled one for reducing representation distribution divergence; and Pseudo-Label Adapter, aiming to align the predicted pseudo-labels with the class distribution of unlabeled data, thereby preventing erroneous pseudo-labels from exacerbating representation divergence. These three adapters collaborate synergistically to reduce the generalization bound, ultimately achieving a more robust and generalizable SSL model. Extensive experiments across various robust SSL scenarios validate the efficacy of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信