Gregg W C Thomas, Patrick Gemmell, Subir B Shakya, Zhirui Hu, Jun S Liu, Timothy B Sackton, Scott V Edwards
{"title":"利用 PhyloAcc 鉴定快速进化的非编码基因组元素的实用指南和工作流程。","authors":"Gregg W C Thomas, Patrick Gemmell, Subir B Shakya, Zhirui Hu, Jun S Liu, Timothy B Sackton, Scott V Edwards","doi":"10.1093/icb/icae056","DOIUrl":null,"url":null,"abstract":"<p><p>Comparative genomics provides ample ways to study genome evolution and its relationship to phenotypic traits. By developing and testing alternate models of evolution throughout a phylogeny, one can estimate rates of molecular evolution along different lineages in a phylogeny and link these rates with observations in extant species, such as convergent phenotypes. Pipelines for such work can help identify when and where genomic changes may be associated with, or possibly influence, phenotypic traits. We recently developed a set of models called PhyloAcc, using a Bayesian framework to estimate rates of nucleotide substitution on different branches of a phylogenetic tree and evaluate their association with pre-defined or estimated phenotypic traits. PhyloAcc-ST and PhyloAcc-GT both allow users to define a priori a set of target lineages and then compare different models to identify loci accelerating in one or more target lineages. Whereas ST considers only one species tree across all input loci, GT considers alternate topologies for every locus. PhyloAcc-C simultaneously models molecular rates and rates of continuous trait evolution, allowing the user to ask whether the two are associated. Here, we describe these models and provide tips and workflows on how to prepare the input data and run PhyloAcc.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":"1513-1525"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579529/pdf/","citationCount":"0","resultStr":"{\"title\":\"Practical Guidance and Workflows for Identifying Fast Evolving Non-Coding Genomic Elements Using PhyloAcc.\",\"authors\":\"Gregg W C Thomas, Patrick Gemmell, Subir B Shakya, Zhirui Hu, Jun S Liu, Timothy B Sackton, Scott V Edwards\",\"doi\":\"10.1093/icb/icae056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Comparative genomics provides ample ways to study genome evolution and its relationship to phenotypic traits. By developing and testing alternate models of evolution throughout a phylogeny, one can estimate rates of molecular evolution along different lineages in a phylogeny and link these rates with observations in extant species, such as convergent phenotypes. Pipelines for such work can help identify when and where genomic changes may be associated with, or possibly influence, phenotypic traits. We recently developed a set of models called PhyloAcc, using a Bayesian framework to estimate rates of nucleotide substitution on different branches of a phylogenetic tree and evaluate their association with pre-defined or estimated phenotypic traits. PhyloAcc-ST and PhyloAcc-GT both allow users to define a priori a set of target lineages and then compare different models to identify loci accelerating in one or more target lineages. Whereas ST considers only one species tree across all input loci, GT considers alternate topologies for every locus. PhyloAcc-C simultaneously models molecular rates and rates of continuous trait evolution, allowing the user to ask whether the two are associated. Here, we describe these models and provide tips and workflows on how to prepare the input data and run PhyloAcc.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":\" \",\"pages\":\"1513-1525\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579529/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icae056\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae056","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Practical Guidance and Workflows for Identifying Fast Evolving Non-Coding Genomic Elements Using PhyloAcc.
Comparative genomics provides ample ways to study genome evolution and its relationship to phenotypic traits. By developing and testing alternate models of evolution throughout a phylogeny, one can estimate rates of molecular evolution along different lineages in a phylogeny and link these rates with observations in extant species, such as convergent phenotypes. Pipelines for such work can help identify when and where genomic changes may be associated with, or possibly influence, phenotypic traits. We recently developed a set of models called PhyloAcc, using a Bayesian framework to estimate rates of nucleotide substitution on different branches of a phylogenetic tree and evaluate their association with pre-defined or estimated phenotypic traits. PhyloAcc-ST and PhyloAcc-GT both allow users to define a priori a set of target lineages and then compare different models to identify loci accelerating in one or more target lineages. Whereas ST considers only one species tree across all input loci, GT considers alternate topologies for every locus. PhyloAcc-C simultaneously models molecular rates and rates of continuous trait evolution, allowing the user to ask whether the two are associated. Here, we describe these models and provide tips and workflows on how to prepare the input data and run PhyloAcc.
期刊介绍:
Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.