Christopher R Bilder, Brianna D Hitt, Brad J Biggerstaff, Joshua M Tebbs, Christopher S McMahan
{"title":"binGroup2:通过分组测试进行感染识别的统计工具。","authors":"Christopher R Bilder, Brianna D Hitt, Brad J Biggerstaff, Joshua M Tebbs, Christopher S McMahan","doi":"10.32614/rj-2023-081","DOIUrl":null,"url":null,"abstract":"<p><p>Group testing is the process of testing items as an amalgamation, rather than separately, to determine the binary status for each item. Its use was especially important during the COVID-19 pandemic through testing specimens for SARS-CoV-2. The adoption of group testing for this and many other applications is because members of a negative testing group can be declared negative with potentially only one test. This subsequently leads to significant increases in laboratory testing capacity. Whenever a group testing algorithm is put into practice, it is critical for laboratories to understand the algorithm's operating characteristics, such as the expected number of tests. Our paper presents the binGroup2 package that provides the statistical tools for this purpose. This R package is the first to address the identification aspect of group testing for a wide variety of algorithms. We illustrate its use through COVID-19 and chlamydia/gonorrhea applications of group testing.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"15 4","pages":"21-36"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139028/pdf/","citationCount":"0","resultStr":"{\"title\":\"binGroup2: Statistical Tools for Infection Identification via Group Testing.\",\"authors\":\"Christopher R Bilder, Brianna D Hitt, Brad J Biggerstaff, Joshua M Tebbs, Christopher S McMahan\",\"doi\":\"10.32614/rj-2023-081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Group testing is the process of testing items as an amalgamation, rather than separately, to determine the binary status for each item. Its use was especially important during the COVID-19 pandemic through testing specimens for SARS-CoV-2. The adoption of group testing for this and many other applications is because members of a negative testing group can be declared negative with potentially only one test. This subsequently leads to significant increases in laboratory testing capacity. Whenever a group testing algorithm is put into practice, it is critical for laboratories to understand the algorithm's operating characteristics, such as the expected number of tests. Our paper presents the binGroup2 package that provides the statistical tools for this purpose. This R package is the first to address the identification aspect of group testing for a wide variety of algorithms. We illustrate its use through COVID-19 and chlamydia/gonorrhea applications of group testing.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"15 4\",\"pages\":\"21-36\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139028/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-081\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/rj-2023-081","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
binGroup2: Statistical Tools for Infection Identification via Group Testing.
Group testing is the process of testing items as an amalgamation, rather than separately, to determine the binary status for each item. Its use was especially important during the COVID-19 pandemic through testing specimens for SARS-CoV-2. The adoption of group testing for this and many other applications is because members of a negative testing group can be declared negative with potentially only one test. This subsequently leads to significant increases in laboratory testing capacity. Whenever a group testing algorithm is put into practice, it is critical for laboratories to understand the algorithm's operating characteristics, such as the expected number of tests. Our paper presents the binGroup2 package that provides the statistical tools for this purpose. This R package is the first to address the identification aspect of group testing for a wide variety of algorithms. We illustrate its use through COVID-19 and chlamydia/gonorrhea applications of group testing.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.