Saroj K Rout, David Rhyner, Jason Greenwald, Roland Riek
{"title":"自模板催化淀粉的特性。","authors":"Saroj K Rout, David Rhyner, Jason Greenwald, Roland Riek","doi":"10.1016/bs.mie.2024.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid aggregates with unique periodic structures have garnered significant attention due to their association with numerous diseases, including systemic amyloidoses and the neurodegenerative diseases Parkinson's, Alzheimer's, and Creutzfeld-Jakob. However, more recent investigations have expanded our understanding of amyloids, revealing their diverse functional biological roles. Amyloids have also been proposed to have played a significant role in prebiotic molecular evolution because of their exceptional stability, spontaneous formation in a prebiotic environment, catalytic and templating abilities, and cooperative interaction with fatty acids, polysaccharides, and nucleic acids. This chapter summarizes methods and techniques associated with studying short amyloidogenic peptides, including detailed procedures for investigating cross-templating and autocatalytic templating reactions. Since the work with amyloidogenic peptides and their aggregates present unique challenges, we have attempted to address these with essential details throughout the procedures. The lessons herein may be used in any amyloid-related research to ensure more reproducible results and reduce entrance barriers for researchers new to the field.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of self-templating catalytic amyloids.\",\"authors\":\"Saroj K Rout, David Rhyner, Jason Greenwald, Roland Riek\",\"doi\":\"10.1016/bs.mie.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyloid aggregates with unique periodic structures have garnered significant attention due to their association with numerous diseases, including systemic amyloidoses and the neurodegenerative diseases Parkinson's, Alzheimer's, and Creutzfeld-Jakob. However, more recent investigations have expanded our understanding of amyloids, revealing their diverse functional biological roles. Amyloids have also been proposed to have played a significant role in prebiotic molecular evolution because of their exceptional stability, spontaneous formation in a prebiotic environment, catalytic and templating abilities, and cooperative interaction with fatty acids, polysaccharides, and nucleic acids. This chapter summarizes methods and techniques associated with studying short amyloidogenic peptides, including detailed procedures for investigating cross-templating and autocatalytic templating reactions. Since the work with amyloidogenic peptides and their aggregates present unique challenges, we have attempted to address these with essential details throughout the procedures. The lessons herein may be used in any amyloid-related research to ensure more reproducible results and reduce entrance barriers for researchers new to the field.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2024.04.004\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.04.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Characterization of self-templating catalytic amyloids.
Amyloid aggregates with unique periodic structures have garnered significant attention due to their association with numerous diseases, including systemic amyloidoses and the neurodegenerative diseases Parkinson's, Alzheimer's, and Creutzfeld-Jakob. However, more recent investigations have expanded our understanding of amyloids, revealing their diverse functional biological roles. Amyloids have also been proposed to have played a significant role in prebiotic molecular evolution because of their exceptional stability, spontaneous formation in a prebiotic environment, catalytic and templating abilities, and cooperative interaction with fatty acids, polysaccharides, and nucleic acids. This chapter summarizes methods and techniques associated with studying short amyloidogenic peptides, including detailed procedures for investigating cross-templating and autocatalytic templating reactions. Since the work with amyloidogenic peptides and their aggregates present unique challenges, we have attempted to address these with essential details throughout the procedures. The lessons herein may be used in any amyloid-related research to ensure more reproducible results and reduce entrance barriers for researchers new to the field.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.