人类胚胎植入前发育的布尔网络模型

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Journal of Computational Biology Pub Date : 2024-06-01 Epub Date: 2024-05-29 DOI:10.1089/cmb.2024.0517
Mathieu Bolteau, Lokmane Chebouba, Laurent David, Jérémie Bourdon, Carito Guziolowski
{"title":"人类胚胎植入前发育的布尔网络模型","authors":"Mathieu Bolteau, Lokmane Chebouba, Laurent David, Jérémie Bourdon, Carito Guziolowski","doi":"10.1089/cmb.2024.0517","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Single-cell transcriptomic studies of differentiating systems allow meaningful understanding, especially in human embryonic development and cell fate determination. We present an innovative method aimed at modeling these intricate processes by leveraging scRNAseq data from various human developmental stages. Our implemented method identifies pseudo-perturbations, since actual perturbations are unavailable due to ethical and technical constraints. By integrating these pseudo-perturbations with prior knowledge of gene interactions, our framework generates stage-specific Boolean networks (BNs). We apply our method to medium and late trophectoderm developmental stages and identify 20 pseudo-perturbations required to infer BNs. The resulting BN families delineate distinct regulatory mechanisms, enabling the differentiation between these developmental stages. We show that our program outperforms existing pseudo-perturbation identification tool. Our framework contributes to comprehending human developmental processes and holds potential applicability to diverse developmental stages and other research scenarios.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"513-523"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boolean Network Models of Human Preimplantation Development.\",\"authors\":\"Mathieu Bolteau, Lokmane Chebouba, Laurent David, Jérémie Bourdon, Carito Guziolowski\",\"doi\":\"10.1089/cmb.2024.0517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <b>Single-cell transcriptomic studies of differentiating systems allow meaningful understanding, especially in human embryonic development and cell fate determination. We present an innovative method aimed at modeling these intricate processes by leveraging scRNAseq data from various human developmental stages. Our implemented method identifies pseudo-perturbations, since actual perturbations are unavailable due to ethical and technical constraints. By integrating these pseudo-perturbations with prior knowledge of gene interactions, our framework generates stage-specific Boolean networks (BNs). We apply our method to medium and late trophectoderm developmental stages and identify 20 pseudo-perturbations required to infer BNs. The resulting BN families delineate distinct regulatory mechanisms, enabling the differentiation between these developmental stages. We show that our program outperforms existing pseudo-perturbation identification tool. Our framework contributes to comprehending human developmental processes and holds potential applicability to diverse developmental stages and other research scenarios.</b>\\n </p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"513-523\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0517\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0517","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对分化系统的单细胞转录组研究可以帮助人们了解其意义,尤其是在人类胚胎发育和细胞命运决定方面。我们提出了一种创新方法,旨在利用来自人类不同发育阶段的 scRNAseq 数据,对这些错综复杂的过程进行建模。由于伦理和技术上的限制,我们无法获得实际的扰动,因此我们采用的方法可以识别伪扰动。通过将这些伪扰动与基因相互作用的先验知识相结合,我们的框架生成了特定阶段的布尔网络(BN)。我们将这一方法应用于中期和晚期滋养层发育阶段,并确定了推断布尔网络所需的 20 种伪扰动。由此产生的 BN 族勾勒出了不同的调控机制,从而能够区分这些发育阶段。我们的研究表明,我们的程序优于现有的伪扰动识别工具。我们的框架有助于理解人类的发育过程,并有可能适用于不同的发育阶段和其他研究场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boolean Network Models of Human Preimplantation Development.

Single-cell transcriptomic studies of differentiating systems allow meaningful understanding, especially in human embryonic development and cell fate determination. We present an innovative method aimed at modeling these intricate processes by leveraging scRNAseq data from various human developmental stages. Our implemented method identifies pseudo-perturbations, since actual perturbations are unavailable due to ethical and technical constraints. By integrating these pseudo-perturbations with prior knowledge of gene interactions, our framework generates stage-specific Boolean networks (BNs). We apply our method to medium and late trophectoderm developmental stages and identify 20 pseudo-perturbations required to infer BNs. The resulting BN families delineate distinct regulatory mechanisms, enabling the differentiation between these developmental stages. We show that our program outperforms existing pseudo-perturbation identification tool. Our framework contributes to comprehending human developmental processes and holds potential applicability to diverse developmental stages and other research scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信