HRD1 介导的 HDAC2 泛素化调节 PPARα 介导的自噬,缓解代谢相关性脂肪肝。

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yina Wang , Yuanguo Chen , Xiao Xiao , Silei Deng , Jingjie Kuang , Yayong Li
{"title":"HRD1 介导的 HDAC2 泛素化调节 PPARα 介导的自噬,缓解代谢相关性脂肪肝。","authors":"Yina Wang ,&nbsp;Yuanguo Chen ,&nbsp;Xiao Xiao ,&nbsp;Silei Deng ,&nbsp;Jingjie Kuang ,&nbsp;Yayong Li","doi":"10.1016/j.bbamcr.2024.119765","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Metabolic-associated fatty liver disease (MAFLD) is a leading cause of chronic liver disease worldwide. Autophagy plays a pivotal role in lipid metabolism; however, the mechanism underlying the reduced autophagic activity in MAFLD remains elusive.</p></div><div><h3>Methods</h3><p>Autophagy was monitored by TUNEL assay and immunofluorescence staining of LC3. The expression of autophagy-related proteins, PPARα, HDAC2, and HRD1 was detected by Western blot. The association between HDAC2 and PPARα promoter was assessed by chromatin immunoprecipitation (ChIP) and dual-luciferase assays, and the HRD1-mediated ubiquitin-proteasomal degradation of HDAC2 was detected by co-immunoprecipitation (co-IP). The in vitro findings were validated in a hypoxia-induced MAFLD mouse model. Histological changes, fibrosis, and apoptosis in liver tissues were detected by hematoxylin and eosin staining, Masson's trichrome staining, and TUNEL assay. The immunoreactivities of key molecules were examined by IHC analysis.</p></div><div><h3>Results</h3><p>Hypoxia-suppressed autophagy in hepatocytes. Hypoxic exposure downregulated HRD1 and PPARα, while upregulating HDAC2 in hepatocytes. Overexpression of PPARα promoted hepatic autophagy, while knocking down HDAC2 or overexpressing HRD1 reduced hypoxia-suppressed autophagy in hepatocytes. Mechanistically, HDAC2 acted as a transcriptional repressor of PPARα, and HRD1 mediated the degradation of HDAC2 through the ubiquitin-proteasome pathway. Functional studies further showed that hypoxia-suppressed hepatic autophagy via the HRD1/HDAC2/PPARα axis in vitro and in vivo.</p></div><div><h3>Conclusion</h3><p>HRD1-mediated ubiquitination of HDAC2 regulates PPARα-mediated autophagy and ameliorates hypoxia-induced MAFLD.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HRD1-mediated ubiquitination of HDAC2 regulates PPARα-mediated autophagy and alleviates metabolic-associated fatty liver disease\",\"authors\":\"Yina Wang ,&nbsp;Yuanguo Chen ,&nbsp;Xiao Xiao ,&nbsp;Silei Deng ,&nbsp;Jingjie Kuang ,&nbsp;Yayong Li\",\"doi\":\"10.1016/j.bbamcr.2024.119765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Metabolic-associated fatty liver disease (MAFLD) is a leading cause of chronic liver disease worldwide. Autophagy plays a pivotal role in lipid metabolism; however, the mechanism underlying the reduced autophagic activity in MAFLD remains elusive.</p></div><div><h3>Methods</h3><p>Autophagy was monitored by TUNEL assay and immunofluorescence staining of LC3. The expression of autophagy-related proteins, PPARα, HDAC2, and HRD1 was detected by Western blot. The association between HDAC2 and PPARα promoter was assessed by chromatin immunoprecipitation (ChIP) and dual-luciferase assays, and the HRD1-mediated ubiquitin-proteasomal degradation of HDAC2 was detected by co-immunoprecipitation (co-IP). The in vitro findings were validated in a hypoxia-induced MAFLD mouse model. Histological changes, fibrosis, and apoptosis in liver tissues were detected by hematoxylin and eosin staining, Masson's trichrome staining, and TUNEL assay. The immunoreactivities of key molecules were examined by IHC analysis.</p></div><div><h3>Results</h3><p>Hypoxia-suppressed autophagy in hepatocytes. Hypoxic exposure downregulated HRD1 and PPARα, while upregulating HDAC2 in hepatocytes. Overexpression of PPARα promoted hepatic autophagy, while knocking down HDAC2 or overexpressing HRD1 reduced hypoxia-suppressed autophagy in hepatocytes. Mechanistically, HDAC2 acted as a transcriptional repressor of PPARα, and HRD1 mediated the degradation of HDAC2 through the ubiquitin-proteasome pathway. Functional studies further showed that hypoxia-suppressed hepatic autophagy via the HRD1/HDAC2/PPARα axis in vitro and in vivo.</p></div><div><h3>Conclusion</h3><p>HRD1-mediated ubiquitination of HDAC2 regulates PPARα-mediated autophagy and ameliorates hypoxia-induced MAFLD.</p></div>\",\"PeriodicalId\":8754,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular cell research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular cell research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167488924001083\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924001083","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:代谢相关性脂肪肝(MAFLD)是全球慢性肝病的主要病因。自噬在脂质代谢中起着举足轻重的作用;然而,自噬活性在 MAFLD 中降低的机制仍不明确:方法:通过TUNEL检测和LC3免疫荧光染色监测自噬。Western印迹法检测自噬相关蛋白、PPARα、HDAC2和HRD1的表达。染色质免疫沉淀(ChIP)和双荧光素酶测定评估了HDAC2和PPARα启动子之间的关联,共免疫沉淀(co-IP)检测了HRD1介导的HDAC2泛素蛋白酶体降解。体外研究结果在缺氧诱导的 MAFLD 小鼠模型中得到了验证。通过苏木精和伊红染色、Masson三色染色和TUNEL检测法检测了肝组织的组织学变化、纤维化和细胞凋亡。通过 IHC 分析检测了关键分子的免疫活性:结果:缺氧抑制了肝细胞的自噬。低氧暴露下调了肝细胞中的 HRD1 和 PPARα,同时上调了 HDAC2。过量表达PPARα可促进肝脏自噬,而敲除HDAC2或过量表达HRD1可减少肝细胞中受缺氧抑制的自噬。从机理上讲,HDAC2是PPARα的转录抑制因子,而HRD1则通过泛素-蛋白酶体途径介导HDAC2的降解。功能研究进一步表明,缺氧通过HRD1/HDAC2/PPARα轴在体外和体内抑制肝脏自噬:结论:HRD1介导的HDAC2泛素化调节了PPARα介导的自噬,改善了缺氧诱导的MAFLD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

HRD1-mediated ubiquitination of HDAC2 regulates PPARα-mediated autophagy and alleviates metabolic-associated fatty liver disease

HRD1-mediated ubiquitination of HDAC2 regulates PPARα-mediated autophagy and alleviates metabolic-associated fatty liver disease

Background

Metabolic-associated fatty liver disease (MAFLD) is a leading cause of chronic liver disease worldwide. Autophagy plays a pivotal role in lipid metabolism; however, the mechanism underlying the reduced autophagic activity in MAFLD remains elusive.

Methods

Autophagy was monitored by TUNEL assay and immunofluorescence staining of LC3. The expression of autophagy-related proteins, PPARα, HDAC2, and HRD1 was detected by Western blot. The association between HDAC2 and PPARα promoter was assessed by chromatin immunoprecipitation (ChIP) and dual-luciferase assays, and the HRD1-mediated ubiquitin-proteasomal degradation of HDAC2 was detected by co-immunoprecipitation (co-IP). The in vitro findings were validated in a hypoxia-induced MAFLD mouse model. Histological changes, fibrosis, and apoptosis in liver tissues were detected by hematoxylin and eosin staining, Masson's trichrome staining, and TUNEL assay. The immunoreactivities of key molecules were examined by IHC analysis.

Results

Hypoxia-suppressed autophagy in hepatocytes. Hypoxic exposure downregulated HRD1 and PPARα, while upregulating HDAC2 in hepatocytes. Overexpression of PPARα promoted hepatic autophagy, while knocking down HDAC2 or overexpressing HRD1 reduced hypoxia-suppressed autophagy in hepatocytes. Mechanistically, HDAC2 acted as a transcriptional repressor of PPARα, and HRD1 mediated the degradation of HDAC2 through the ubiquitin-proteasome pathway. Functional studies further showed that hypoxia-suppressed hepatic autophagy via the HRD1/HDAC2/PPARα axis in vitro and in vivo.

Conclusion

HRD1-mediated ubiquitination of HDAC2 regulates PPARα-mediated autophagy and ameliorates hypoxia-induced MAFLD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信