用 IFSQSAR 识别物理化学特性估算中的不确定性

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Trevor N. Brown, Alessandro Sangion, Jon A. Arnot
{"title":"用 IFSQSAR 识别物理化学特性估算中的不确定性","authors":"Trevor N. Brown,&nbsp;Alessandro Sangion,&nbsp;Jon A. Arnot","doi":"10.1186/s13321-024-00853-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study describes the development and evaluation of six new models for predicting physical–chemical (PC) properties that are highly relevant for chemical hazard, exposure, and risk estimation: solubility (in water <i>S</i><sub><i>W</i></sub> and octanol <i>S</i><sub><i>O</i></sub>), vapor pressure (<i>VP</i>), and the octanol–water (<i>K</i><sub><i>OW</i></sub>), octanol–air (<i>K</i><sub><i>OA</i></sub>), and air–water (<i>K</i><sub><i>AW</i></sub>) partition ratios. The models are implemented in the Iterative Fragment Selection Quantitative Structure–Activity Relationship (IFSQSAR) python package, Version 1.1.0. These models are implemented as Poly-Parameter Linear Free Energy Relationship (PPLFER) equations which combine experimentally calibrated system parameters and solute descriptors predicted with QSPRs. Two other ancillary models have been developed and implemented, a QSPR for Molar Volume (<i>MV</i>) and a classifier for the physical state of chemicals at room temperature. The IFSQSAR methods for characterizing applicability domain (AD) and calculating uncertainty estimates expressed as 95% prediction intervals (PI) for predicted properties are described and tested on 9,000 measured partition ratios and 4,000 <i>VP</i> and <i>S</i><sub><i>W</i></sub> values. The measured data are external to IFSQSAR training and validation datasets and are used to assess the predictivity of the models for “novel chemicals” in an unbiased manner. The 95% PI intervals calculated from validation datasets for partition ratios needed to be scaled by a factor of 1.25 to capture 95% of the external data. Predictions for <i>VP</i> and <i>S</i><sub><i>W</i></sub> are more uncertain, primarily due to the challenges in differentiating their physical state (i.e., liquids or solids) at room temperature. The prediction accuracy of the models for log <i>K</i><sub><i>OW</i></sub>, log <i>K</i><sub><i>AW</i></sub> and log <i>K</i><sub><i>OA</i></sub> of novel, data-poor chemicals is estimated to be in the range of 0.7 to 1.4 root mean squared error of prediction (RMSEP), with RMSEP in the range 1.7–1.8 for log <i>VP</i> and log <i>S</i><sub><i>W</i></sub>. </p><p><b>Scientific contribution</b></p><p>New partitioning models integrate empirical PPLFER equations and QSARs, allowing for seamless integration of experimental data and model predictions. This work tests the real predictivity of the models for novel chemicals which are not in the model training or external validation datasets.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00853-w","citationCount":"0","resultStr":"{\"title\":\"Identifying uncertainty in physical–chemical property estimation with IFSQSAR\",\"authors\":\"Trevor N. Brown,&nbsp;Alessandro Sangion,&nbsp;Jon A. Arnot\",\"doi\":\"10.1186/s13321-024-00853-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study describes the development and evaluation of six new models for predicting physical–chemical (PC) properties that are highly relevant for chemical hazard, exposure, and risk estimation: solubility (in water <i>S</i><sub><i>W</i></sub> and octanol <i>S</i><sub><i>O</i></sub>), vapor pressure (<i>VP</i>), and the octanol–water (<i>K</i><sub><i>OW</i></sub>), octanol–air (<i>K</i><sub><i>OA</i></sub>), and air–water (<i>K</i><sub><i>AW</i></sub>) partition ratios. The models are implemented in the Iterative Fragment Selection Quantitative Structure–Activity Relationship (IFSQSAR) python package, Version 1.1.0. These models are implemented as Poly-Parameter Linear Free Energy Relationship (PPLFER) equations which combine experimentally calibrated system parameters and solute descriptors predicted with QSPRs. Two other ancillary models have been developed and implemented, a QSPR for Molar Volume (<i>MV</i>) and a classifier for the physical state of chemicals at room temperature. The IFSQSAR methods for characterizing applicability domain (AD) and calculating uncertainty estimates expressed as 95% prediction intervals (PI) for predicted properties are described and tested on 9,000 measured partition ratios and 4,000 <i>VP</i> and <i>S</i><sub><i>W</i></sub> values. The measured data are external to IFSQSAR training and validation datasets and are used to assess the predictivity of the models for “novel chemicals” in an unbiased manner. The 95% PI intervals calculated from validation datasets for partition ratios needed to be scaled by a factor of 1.25 to capture 95% of the external data. Predictions for <i>VP</i> and <i>S</i><sub><i>W</i></sub> are more uncertain, primarily due to the challenges in differentiating their physical state (i.e., liquids or solids) at room temperature. The prediction accuracy of the models for log <i>K</i><sub><i>OW</i></sub>, log <i>K</i><sub><i>AW</i></sub> and log <i>K</i><sub><i>OA</i></sub> of novel, data-poor chemicals is estimated to be in the range of 0.7 to 1.4 root mean squared error of prediction (RMSEP), with RMSEP in the range 1.7–1.8 for log <i>VP</i> and log <i>S</i><sub><i>W</i></sub>. </p><p><b>Scientific contribution</b></p><p>New partitioning models integrate empirical PPLFER equations and QSARs, allowing for seamless integration of experimental data and model predictions. This work tests the real predictivity of the models for novel chemicals which are not in the model training or external validation datasets.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00853-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00853-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00853-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了六种新模型的开发和评估情况,这些模型用于预测与化学品危害、暴露和风险评估高度相关的物理化学(PC)特性:溶解度(在水 SW 和辛醇 SO 中)、蒸气压(VP)以及辛醇-水分配比(KOW)、辛醇-空气分配比(KOA)和空气-水分配比(KAW)。这些模型是在迭代片段选择定量结构-活性关系(IFSQSAR)1.1.0 版 python 软件包中实现的。这些模型以多参数线性自由能关系(PPLFER)方程的形式实现,结合了实验校准的系统参数和 QSPR 预测的溶质描述符。还开发并实施了另外两个辅助模型,一个是摩尔体积(MV)QSPR,另一个是室温下化学品物理状态分类器。IFSQSAR 用于描述适用域 (AD) 和计算不确定性估计值(以预测性质的 95% 预测区间 (PI) 表示)的方法已在 9,000 个测得的分配比和 4,000 个 VP 和 SW 值上进行了描述和测试。测量数据是 IFSQSAR 训练和验证数据集的外部数据,用于以无偏见的方式评估模型对 "新型化学品 "的预测能力。从验证数据集计算出的分配比 95% PI 区间需要按 1.25 的系数进行缩放,以获取 95% 的外部数据。对 VP 和 SW 的预测不确定性较大,这主要是由于在室温下区分它们的物理状态(即液体或 固体)存在困难。据估计,模型对数据贫乏的新型化学品的对数 KOW、对数 KAW 和对数 KOA 的预测精度在 0.7 至 1.4 预测均方根误差 (RMSEP) 之间,对数 VP 和对数 SW 的 RMSEP 在 1.7 至 1.8 之间。科学贡献 新的分区模型整合了 PPLFER 经验方程和 QSAR,实现了实验数据和模型预测的无缝整合。这项工作测试了模型对模型训练数据集或外部验证数据集中没有的新型化学品的实际预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying uncertainty in physical–chemical property estimation with IFSQSAR

This study describes the development and evaluation of six new models for predicting physical–chemical (PC) properties that are highly relevant for chemical hazard, exposure, and risk estimation: solubility (in water SW and octanol SO), vapor pressure (VP), and the octanol–water (KOW), octanol–air (KOA), and air–water (KAW) partition ratios. The models are implemented in the Iterative Fragment Selection Quantitative Structure–Activity Relationship (IFSQSAR) python package, Version 1.1.0. These models are implemented as Poly-Parameter Linear Free Energy Relationship (PPLFER) equations which combine experimentally calibrated system parameters and solute descriptors predicted with QSPRs. Two other ancillary models have been developed and implemented, a QSPR for Molar Volume (MV) and a classifier for the physical state of chemicals at room temperature. The IFSQSAR methods for characterizing applicability domain (AD) and calculating uncertainty estimates expressed as 95% prediction intervals (PI) for predicted properties are described and tested on 9,000 measured partition ratios and 4,000 VP and SW values. The measured data are external to IFSQSAR training and validation datasets and are used to assess the predictivity of the models for “novel chemicals” in an unbiased manner. The 95% PI intervals calculated from validation datasets for partition ratios needed to be scaled by a factor of 1.25 to capture 95% of the external data. Predictions for VP and SW are more uncertain, primarily due to the challenges in differentiating their physical state (i.e., liquids or solids) at room temperature. The prediction accuracy of the models for log KOW, log KAW and log KOA of novel, data-poor chemicals is estimated to be in the range of 0.7 to 1.4 root mean squared error of prediction (RMSEP), with RMSEP in the range 1.7–1.8 for log VP and log SW.

Scientific contribution

New partitioning models integrate empirical PPLFER equations and QSARs, allowing for seamless integration of experimental data and model predictions. This work tests the real predictivity of the models for novel chemicals which are not in the model training or external validation datasets.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信