Wonseok Choi, Seongha Hwang, Byeonghak Lee, Jooyoung Lee
{"title":"ZLR:实现全面安全的快速在线验证加密方案","authors":"Wonseok Choi, Seongha Hwang, Byeonghak Lee, Jooyoung Lee","doi":"10.1007/s10623-024-01434-6","DOIUrl":null,"url":null,"abstract":"<p>Online authenticated encryption has been considered of practical relevance in light-weight environments due to low latency and constant memory usage. In this paper, we propose a new tweakable block cipher-based online authenticated encryption scheme, dubbed <span>ZLR</span>, and its domain separation variant, dubbed <span>DS-ZLR</span>. <span>ZLR</span> and <span>DS-ZLR</span> follow the Encrypt-Mix-Encrypt paradigm. However, in contrast to existing schemes using the same paradigm such as <span>ELmE</span> and <span>CoLM</span>, <span>ZLR</span> and <span>DS-ZLR</span> enjoy <i>n</i>-bit security by using larger internal states with an efficient <span>ZHash</span>-like hashing algorithm. In this way, 2<i>n</i>-bit blocks are processed with only a single primitive call for hashing and two primitive calls for encryption and decryption, when they are based on an <i>n</i>-bit tweakable block cipher using <i>n</i>-bit (resp. 2<i>n</i>-bit) tweaks for <span>ZLR</span> (resp. <span>DS-ZLR</span>). Furthermore, they support pipelined computation as well as online nonce-misuse resistance. To the best of our knowledge, <span>ZLR</span> and <span>DS-ZLR</span> are the first pipelineable tweakable block cipher-based online authenticated encryption schemes of rate-2/3 that provide <i>n</i>-bit security with online nonce-misuse resistance.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"50 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZLR: a fast online authenticated encryption scheme achieving full security\",\"authors\":\"Wonseok Choi, Seongha Hwang, Byeonghak Lee, Jooyoung Lee\",\"doi\":\"10.1007/s10623-024-01434-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online authenticated encryption has been considered of practical relevance in light-weight environments due to low latency and constant memory usage. In this paper, we propose a new tweakable block cipher-based online authenticated encryption scheme, dubbed <span>ZLR</span>, and its domain separation variant, dubbed <span>DS-ZLR</span>. <span>ZLR</span> and <span>DS-ZLR</span> follow the Encrypt-Mix-Encrypt paradigm. However, in contrast to existing schemes using the same paradigm such as <span>ELmE</span> and <span>CoLM</span>, <span>ZLR</span> and <span>DS-ZLR</span> enjoy <i>n</i>-bit security by using larger internal states with an efficient <span>ZHash</span>-like hashing algorithm. In this way, 2<i>n</i>-bit blocks are processed with only a single primitive call for hashing and two primitive calls for encryption and decryption, when they are based on an <i>n</i>-bit tweakable block cipher using <i>n</i>-bit (resp. 2<i>n</i>-bit) tweaks for <span>ZLR</span> (resp. <span>DS-ZLR</span>). Furthermore, they support pipelined computation as well as online nonce-misuse resistance. To the best of our knowledge, <span>ZLR</span> and <span>DS-ZLR</span> are the first pipelineable tweakable block cipher-based online authenticated encryption schemes of rate-2/3 that provide <i>n</i>-bit security with online nonce-misuse resistance.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01434-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01434-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
ZLR: a fast online authenticated encryption scheme achieving full security
Online authenticated encryption has been considered of practical relevance in light-weight environments due to low latency and constant memory usage. In this paper, we propose a new tweakable block cipher-based online authenticated encryption scheme, dubbed ZLR, and its domain separation variant, dubbed DS-ZLR. ZLR and DS-ZLR follow the Encrypt-Mix-Encrypt paradigm. However, in contrast to existing schemes using the same paradigm such as ELmE and CoLM, ZLR and DS-ZLR enjoy n-bit security by using larger internal states with an efficient ZHash-like hashing algorithm. In this way, 2n-bit blocks are processed with only a single primitive call for hashing and two primitive calls for encryption and decryption, when they are based on an n-bit tweakable block cipher using n-bit (resp. 2n-bit) tweaks for ZLR (resp. DS-ZLR). Furthermore, they support pipelined computation as well as online nonce-misuse resistance. To the best of our knowledge, ZLR and DS-ZLR are the first pipelineable tweakable block cipher-based online authenticated encryption schemes of rate-2/3 that provide n-bit security with online nonce-misuse resistance.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.