谐函数节点体积的近似尖锐下界

IF 3.1 1区 数学 Q1 MATHEMATICS
Alexander Logunov, Lakshmi Priya M. E., Andrea Sartori
{"title":"谐函数节点体积的近似尖锐下界","authors":"Alexander Logunov,&nbsp;Lakshmi Priya M. E.,&nbsp;Andrea Sartori","doi":"10.1002/cpa.22207","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on a relation between the growth of harmonic functions and the Hausdorff measure of their zero sets. Let <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math> be a real-valued harmonic function in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$u(0)=0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\ge 3$</annotation>\n </semantics></math>. We prove\n\n </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 12","pages":"4328-4389"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22207","citationCount":"0","resultStr":"{\"title\":\"Almost sharp lower bound for the nodal volume of harmonic functions\",\"authors\":\"Alexander Logunov,&nbsp;Lakshmi Priya M. E.,&nbsp;Andrea Sartori\",\"doi\":\"10.1002/cpa.22207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on a relation between the growth of harmonic functions and the Hausdorff measure of their zero sets. Let <span></span><math>\\n <semantics>\\n <mi>u</mi>\\n <annotation>$u$</annotation>\\n </semantics></math> be a real-valued harmonic function in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$u(0)=0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n\\\\ge 3$</annotation>\\n </semantics></math>. We prove\\n\\n </p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 12\",\"pages\":\"4328-4389\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22207\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22207\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22207","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究谐函数的增长与其零集的 Hausdorff 度量之间的关系。设 是一个实值谐函数,且 。我们证明了翻倍指数是由定义的增长概念,这给出了 、 的零集的 Hausdorff 度量的一个近乎尖锐的下限,猜想它是线性的。文章的新内容是稳定增长的概念,以及谐函数倍指数分布下界的多尺度归纳技术。与之前最著名的下界 ,即纳迪拉什维利猜想相比,它给出了一个重大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Almost sharp lower bound for the nodal volume of harmonic functions

Almost sharp lower bound for the nodal volume of harmonic functions

This paper focuses on a relation between the growth of harmonic functions and the Hausdorff measure of their zero sets. Let u $u$ be a real-valued harmonic function in R n $\mathbb {R}^n$ with u ( 0 ) = 0 $u(0)=0$ and n 3 $n\ge 3$ . We prove

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信