谐函数节点体积的近似尖锐下界

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Alexander Logunov, Lakshmi Priya M. E., Andrea Sartori
{"title":"谐函数节点体积的近似尖锐下界","authors":"Alexander Logunov,&nbsp;Lakshmi Priya M. E.,&nbsp;Andrea Sartori","doi":"10.1002/cpa.22207","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on a relation between the growth of harmonic functions and the Hausdorff measure of their zero sets. Let <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math> be a real-valued harmonic function in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$u(0)=0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\ge 3$</annotation>\n </semantics></math>. We prove\n\n </p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22207","citationCount":"0","resultStr":"{\"title\":\"Almost sharp lower bound for the nodal volume of harmonic functions\",\"authors\":\"Alexander Logunov,&nbsp;Lakshmi Priya M. E.,&nbsp;Andrea Sartori\",\"doi\":\"10.1002/cpa.22207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on a relation between the growth of harmonic functions and the Hausdorff measure of their zero sets. Let <span></span><math>\\n <semantics>\\n <mi>u</mi>\\n <annotation>$u$</annotation>\\n </semantics></math> be a real-valued harmonic function in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$u(0)=0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n\\\\ge 3$</annotation>\\n </semantics></math>. We prove\\n\\n </p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22207\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22207\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22207","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究谐函数的增长与其零集的 Hausdorff 度量之间的关系。设 是一个实值谐函数,且 。我们证明了翻倍指数是由定义的增长概念,这给出了 、 的零集的 Hausdorff 度量的一个近乎尖锐的下限,猜想它是线性的。文章的新内容是稳定增长的概念,以及谐函数倍指数分布下界的多尺度归纳技术。与之前最著名的下界 ,即纳迪拉什维利猜想相比,它给出了一个重大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Almost sharp lower bound for the nodal volume of harmonic functions

Almost sharp lower bound for the nodal volume of harmonic functions

This paper focuses on a relation between the growth of harmonic functions and the Hausdorff measure of their zero sets. Let u $u$ be a real-valued harmonic function in R n $\mathbb {R}^n$ with u ( 0 ) = 0 $u(0)=0$ and n 3 $n\ge 3$ . We prove

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信