Peisen Ruan, Yao Zheng, Zhuoya Dong, Yan Wang, Ya'nan Xu, Hehe Chen
{"title":"[AMPK信号通道调控自噬和线粒体平衡的研究进展]。","authors":"Peisen Ruan, Yao Zheng, Zhuoya Dong, Yan Wang, Ya'nan Xu, Hehe Chen","doi":"10.3760/cma.j.cn121430-20230302-00132","DOIUrl":null,"url":null,"abstract":"<p><p>AMP-activated protein kinase (AMPK) is a widely distributed and evolutionarily conserved serine/threonine protein kinase present in eukaryotic cells. In regulating cellular energy metabolism, AMPK plays an extremely important role as an energy metabolic kinase. When the body is in a low energy state, AMPK is activated in response to changes in intracellular adenine nucleotide levels and is bound to adenosine monophosphate (AMP) or adenosine diphosphate (ADP). Activated AMPK regulates various metabolic processes, including lipid and glucose metabolism and cellular autophagy. AMPK directly promotes autophagy by phosphorylating autophagy-related proteins in the mammalian target of rapamycin complex 1 (mTORC1), serine/threonine protein kinase-dysregulated 51-like kinase 1 (ULK1) and type III phosphatidylinositol 3-kinase-vacuolar protein-sorting 34 (PIK3C3-VPS34) complexes. AMPK also indirectly promotes autophagy by regulating the expression of downstream autophagy-related genes of transcription factors such as forkhead box O3 (FOXO3), lysosomal function transcription factor EB (TFEB) and bromodomain protein 4 (BRD4). AMPK also regulates mitochondrial autophagy, induces the division of damaged mitochondria and promotes the transfer of the autophagic response to damaged mitochondria. Another function of AMPK is to regulate mitochondrial health by stimulating mitochondrial biogenesis and participating in various aspects of mitochondrial homeostasis regulation. This review discusses the specific regulation of mitochondrial biology and internal environmental homeostasis by AMPK signaling channels as central to the cellular response to energy stress and regulation of mitochondria, highlighting the key role of AMPK in regulating cellular autophagy and mitochondrial autophagy, as well as advances in research on the regulation of mitochondrial homeostasis.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Research progress in the regulation of autophagy and mitochondrial homeostasis by AMPK signaling channels].\",\"authors\":\"Peisen Ruan, Yao Zheng, Zhuoya Dong, Yan Wang, Ya'nan Xu, Hehe Chen\",\"doi\":\"10.3760/cma.j.cn121430-20230302-00132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AMP-activated protein kinase (AMPK) is a widely distributed and evolutionarily conserved serine/threonine protein kinase present in eukaryotic cells. In regulating cellular energy metabolism, AMPK plays an extremely important role as an energy metabolic kinase. When the body is in a low energy state, AMPK is activated in response to changes in intracellular adenine nucleotide levels and is bound to adenosine monophosphate (AMP) or adenosine diphosphate (ADP). Activated AMPK regulates various metabolic processes, including lipid and glucose metabolism and cellular autophagy. AMPK directly promotes autophagy by phosphorylating autophagy-related proteins in the mammalian target of rapamycin complex 1 (mTORC1), serine/threonine protein kinase-dysregulated 51-like kinase 1 (ULK1) and type III phosphatidylinositol 3-kinase-vacuolar protein-sorting 34 (PIK3C3-VPS34) complexes. AMPK also indirectly promotes autophagy by regulating the expression of downstream autophagy-related genes of transcription factors such as forkhead box O3 (FOXO3), lysosomal function transcription factor EB (TFEB) and bromodomain protein 4 (BRD4). AMPK also regulates mitochondrial autophagy, induces the division of damaged mitochondria and promotes the transfer of the autophagic response to damaged mitochondria. Another function of AMPK is to regulate mitochondrial health by stimulating mitochondrial biogenesis and participating in various aspects of mitochondrial homeostasis regulation. This review discusses the specific regulation of mitochondrial biology and internal environmental homeostasis by AMPK signaling channels as central to the cellular response to energy stress and regulation of mitochondria, highlighting the key role of AMPK in regulating cellular autophagy and mitochondrial autophagy, as well as advances in research on the regulation of mitochondrial homeostasis.</p>\",\"PeriodicalId\":24079,\"journal\":{\"name\":\"Zhonghua wei zhong bing ji jiu yi xue\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhonghua wei zhong bing ji jiu yi xue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn121430-20230302-00132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20230302-00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Research progress in the regulation of autophagy and mitochondrial homeostasis by AMPK signaling channels].
AMP-activated protein kinase (AMPK) is a widely distributed and evolutionarily conserved serine/threonine protein kinase present in eukaryotic cells. In regulating cellular energy metabolism, AMPK plays an extremely important role as an energy metabolic kinase. When the body is in a low energy state, AMPK is activated in response to changes in intracellular adenine nucleotide levels and is bound to adenosine monophosphate (AMP) or adenosine diphosphate (ADP). Activated AMPK regulates various metabolic processes, including lipid and glucose metabolism and cellular autophagy. AMPK directly promotes autophagy by phosphorylating autophagy-related proteins in the mammalian target of rapamycin complex 1 (mTORC1), serine/threonine protein kinase-dysregulated 51-like kinase 1 (ULK1) and type III phosphatidylinositol 3-kinase-vacuolar protein-sorting 34 (PIK3C3-VPS34) complexes. AMPK also indirectly promotes autophagy by regulating the expression of downstream autophagy-related genes of transcription factors such as forkhead box O3 (FOXO3), lysosomal function transcription factor EB (TFEB) and bromodomain protein 4 (BRD4). AMPK also regulates mitochondrial autophagy, induces the division of damaged mitochondria and promotes the transfer of the autophagic response to damaged mitochondria. Another function of AMPK is to regulate mitochondrial health by stimulating mitochondrial biogenesis and participating in various aspects of mitochondrial homeostasis regulation. This review discusses the specific regulation of mitochondrial biology and internal environmental homeostasis by AMPK signaling channels as central to the cellular response to energy stress and regulation of mitochondria, highlighting the key role of AMPK in regulating cellular autophagy and mitochondrial autophagy, as well as advances in research on the regulation of mitochondrial homeostasis.