Mariia Bilous, Léonard Hérault, Aurélie Ag Gabriel, Matei Teleman, David Gfeller
{"title":"在单细胞基因组学数据中构建和分析元胞。","authors":"Mariia Bilous, Léonard Hérault, Aurélie Ag Gabriel, Matei Teleman, David Gfeller","doi":"10.1038/s44320-024-00045-6","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of high-throughput single-cell genomics technologies has fundamentally transformed biological sciences. Currently, millions of cells from complex biological tissues can be phenotypically profiled across multiple modalities. The scaling of computational methods to analyze and visualize such data is a constant challenge, and tools need to be regularly updated, if not redesigned, to cope with ever-growing numbers of cells. Over the last few years, metacells have been introduced to reduce the size and complexity of single-cell genomics data while preserving biologically relevant information and improving interpretability. Here, we review recent studies that capitalize on the concept of metacells-and the many variants in nomenclature that have been used. We further outline how and when metacells should (or should not) be used to analyze single-cell genomics data and what should be considered when analyzing such data at the metacell level. To facilitate the exploration of metacells, we provide a comprehensive tutorial on the construction and analysis of metacells from single-cell RNA-seq data ( https://github.com/GfellerLab/MetacellAnalysisTutorial ) as well as a fully integrated pipeline to rapidly build, visualize and evaluate metacells with different methods ( https://github.com/GfellerLab/MetacellAnalysisToolkit ).</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"744-766"},"PeriodicalIF":8.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220014/pdf/","citationCount":"0","resultStr":"{\"title\":\"Building and analyzing metacells in single-cell genomics data.\",\"authors\":\"Mariia Bilous, Léonard Hérault, Aurélie Ag Gabriel, Matei Teleman, David Gfeller\",\"doi\":\"10.1038/s44320-024-00045-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advent of high-throughput single-cell genomics technologies has fundamentally transformed biological sciences. Currently, millions of cells from complex biological tissues can be phenotypically profiled across multiple modalities. The scaling of computational methods to analyze and visualize such data is a constant challenge, and tools need to be regularly updated, if not redesigned, to cope with ever-growing numbers of cells. Over the last few years, metacells have been introduced to reduce the size and complexity of single-cell genomics data while preserving biologically relevant information and improving interpretability. Here, we review recent studies that capitalize on the concept of metacells-and the many variants in nomenclature that have been used. We further outline how and when metacells should (or should not) be used to analyze single-cell genomics data and what should be considered when analyzing such data at the metacell level. To facilitate the exploration of metacells, we provide a comprehensive tutorial on the construction and analysis of metacells from single-cell RNA-seq data ( https://github.com/GfellerLab/MetacellAnalysisTutorial ) as well as a fully integrated pipeline to rapidly build, visualize and evaluate metacells with different methods ( https://github.com/GfellerLab/MetacellAnalysisToolkit ).</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"744-766\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-024-00045-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-024-00045-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Building and analyzing metacells in single-cell genomics data.
The advent of high-throughput single-cell genomics technologies has fundamentally transformed biological sciences. Currently, millions of cells from complex biological tissues can be phenotypically profiled across multiple modalities. The scaling of computational methods to analyze and visualize such data is a constant challenge, and tools need to be regularly updated, if not redesigned, to cope with ever-growing numbers of cells. Over the last few years, metacells have been introduced to reduce the size and complexity of single-cell genomics data while preserving biologically relevant information and improving interpretability. Here, we review recent studies that capitalize on the concept of metacells-and the many variants in nomenclature that have been used. We further outline how and when metacells should (or should not) be used to analyze single-cell genomics data and what should be considered when analyzing such data at the metacell level. To facilitate the exploration of metacells, we provide a comprehensive tutorial on the construction and analysis of metacells from single-cell RNA-seq data ( https://github.com/GfellerLab/MetacellAnalysisTutorial ) as well as a fully integrated pipeline to rapidly build, visualize and evaluate metacells with different methods ( https://github.com/GfellerLab/MetacellAnalysisToolkit ).
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.