Xin Chen, Chunying Gao, Lyrialle W Han, Sibylle Heidelberger, Michael Z Liao, Naveen K Neradugomma, Zhanglin Ni, Diana L Shuster, Honggang Wang, Yi Zhang, Lin Zhou
{"title":"妊娠期药物处置中的外排转运体。","authors":"Xin Chen, Chunying Gao, Lyrialle W Han, Sibylle Heidelberger, Michael Z Liao, Naveen K Neradugomma, Zhanglin Ni, Diana L Shuster, Honggang Wang, Yi Zhang, Lin Zhou","doi":"10.1124/dmd.123.001385","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence-based dose selection of drugs in pregnant women has been lacking due to challenges in studying maternal-fetal pharmacokinetics. Hence, many drugs are administered off-label during pregnancy based on data obtained from non-pregnant women. During pregnancy, drug transporters play an important role in drug disposition along with known gestational age-dependent changes in physiology and drug-metabolizing enzymes. In this review, as Dr. Qingcheng Mao's former and current lab members, we summarize the collective contributions of Dr. Mao, who lost his life to cancer, focusing on the role of drug transporters in drug disposition during pregnancy. Dr. Mao and his team initiated their research by characterizing the structure of Breast Cancer Resistance Protein [BCRP, ATP-Binding Cassette (ABC) G2]. Subsequently, they have made significant contributions to the understanding of the role of BCRP and other transporters, particularly P-glycoprotein (P-gp/ABCB1), in the exposure of pregnant women and their fetuses to various drugs, including nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol, and their metabolites. This review also highlights the gestation- and pregnancy-dependent transporter expression at the blood-brain and blood-placenta barriers in mice. <b>Significance Statement</b> Dr. Qingcheng Mao and his team have made significant contributions to the investigation of the role of efflux transporters, especially P-glycoprotein and breast cancer resistance protein, in maternal-fetal exposure to many xenobiotics: nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol and their metabolites. Studies of individual compounds and the expression of transporters during gestation and pregnancy have improved the understanding of maternal-fetal pharmacokinetics.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efflux transporters in drug disposition during pregnancy.\",\"authors\":\"Xin Chen, Chunying Gao, Lyrialle W Han, Sibylle Heidelberger, Michael Z Liao, Naveen K Neradugomma, Zhanglin Ni, Diana L Shuster, Honggang Wang, Yi Zhang, Lin Zhou\",\"doi\":\"10.1124/dmd.123.001385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evidence-based dose selection of drugs in pregnant women has been lacking due to challenges in studying maternal-fetal pharmacokinetics. Hence, many drugs are administered off-label during pregnancy based on data obtained from non-pregnant women. During pregnancy, drug transporters play an important role in drug disposition along with known gestational age-dependent changes in physiology and drug-metabolizing enzymes. In this review, as Dr. Qingcheng Mao's former and current lab members, we summarize the collective contributions of Dr. Mao, who lost his life to cancer, focusing on the role of drug transporters in drug disposition during pregnancy. Dr. Mao and his team initiated their research by characterizing the structure of Breast Cancer Resistance Protein [BCRP, ATP-Binding Cassette (ABC) G2]. Subsequently, they have made significant contributions to the understanding of the role of BCRP and other transporters, particularly P-glycoprotein (P-gp/ABCB1), in the exposure of pregnant women and their fetuses to various drugs, including nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol, and their metabolites. This review also highlights the gestation- and pregnancy-dependent transporter expression at the blood-brain and blood-placenta barriers in mice. <b>Significance Statement</b> Dr. Qingcheng Mao and his team have made significant contributions to the investigation of the role of efflux transporters, especially P-glycoprotein and breast cancer resistance protein, in maternal-fetal exposure to many xenobiotics: nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol and their metabolites. Studies of individual compounds and the expression of transporters during gestation and pregnancy have improved the understanding of maternal-fetal pharmacokinetics.</p>\",\"PeriodicalId\":11309,\"journal\":{\"name\":\"Drug Metabolism and Disposition\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/dmd.123.001385\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.123.001385","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Efflux transporters in drug disposition during pregnancy.
Evidence-based dose selection of drugs in pregnant women has been lacking due to challenges in studying maternal-fetal pharmacokinetics. Hence, many drugs are administered off-label during pregnancy based on data obtained from non-pregnant women. During pregnancy, drug transporters play an important role in drug disposition along with known gestational age-dependent changes in physiology and drug-metabolizing enzymes. In this review, as Dr. Qingcheng Mao's former and current lab members, we summarize the collective contributions of Dr. Mao, who lost his life to cancer, focusing on the role of drug transporters in drug disposition during pregnancy. Dr. Mao and his team initiated their research by characterizing the structure of Breast Cancer Resistance Protein [BCRP, ATP-Binding Cassette (ABC) G2]. Subsequently, they have made significant contributions to the understanding of the role of BCRP and other transporters, particularly P-glycoprotein (P-gp/ABCB1), in the exposure of pregnant women and their fetuses to various drugs, including nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol, and their metabolites. This review also highlights the gestation- and pregnancy-dependent transporter expression at the blood-brain and blood-placenta barriers in mice. Significance Statement Dr. Qingcheng Mao and his team have made significant contributions to the investigation of the role of efflux transporters, especially P-glycoprotein and breast cancer resistance protein, in maternal-fetal exposure to many xenobiotics: nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol and their metabolites. Studies of individual compounds and the expression of transporters during gestation and pregnancy have improved the understanding of maternal-fetal pharmacokinetics.
期刊介绍:
An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.