定值映射的芬切尔共轭概念

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Nguyen Mau Nam, Gary Sandine, Nguyen Nang Thieu, Nguyen Dong Yen
{"title":"定值映射的芬切尔共轭概念","authors":"Nguyen Mau Nam, Gary Sandine, Nguyen Nang Thieu, Nguyen Dong Yen","doi":"10.1007/s10957-024-02455-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a novel concept of the Fenchel conjugate for set-valued mappings and investigate its properties in finite and infinite dimensions. After establishing some fundamental properties of the Fenchel conjugate for set-valued mappings, we derive its main calculus rules in various settings. Our approach is geometric and draws inspiration from the successful application of this method by B.S. Mordukhovich and coauthors in variational and convex analysis. Subsequently, we demonstrate that our new findings for the Fenchel conjugate of set-valued mappings can be utilized to obtain many old and new calculus rules of convex generalized differentiation in both finite and infinite dimensions.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"5 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Notion of Fenchel Conjugate for Set-Valued Mappings\",\"authors\":\"Nguyen Mau Nam, Gary Sandine, Nguyen Nang Thieu, Nguyen Dong Yen\",\"doi\":\"10.1007/s10957-024-02455-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a novel concept of the Fenchel conjugate for set-valued mappings and investigate its properties in finite and infinite dimensions. After establishing some fundamental properties of the Fenchel conjugate for set-valued mappings, we derive its main calculus rules in various settings. Our approach is geometric and draws inspiration from the successful application of this method by B.S. Mordukhovich and coauthors in variational and convex analysis. Subsequently, we demonstrate that our new findings for the Fenchel conjugate of set-valued mappings can be utilized to obtain many old and new calculus rules of convex generalized differentiation in both finite and infinite dimensions.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02455-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02455-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个新颖的概念,即定值映射的芬切尔共轭,并研究了它在有限维度和无限维度中的性质。在确定了定值映射的 Fenchel 共轭的一些基本性质后,我们推导出了它在各种情况下的主要微积分规则。我们的方法是几何方法,并从 B.S. Mordukhovich 及其合作者在变分和凸分析中成功应用该方法中获得灵感。随后,我们证明了我们对定值映射的芬切尔共轭的新发现可以用来获得有限维度和无限维度凸泛微分的许多新旧微积分规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Notion of Fenchel Conjugate for Set-Valued Mappings

In this paper, we present a novel concept of the Fenchel conjugate for set-valued mappings and investigate its properties in finite and infinite dimensions. After establishing some fundamental properties of the Fenchel conjugate for set-valued mappings, we derive its main calculus rules in various settings. Our approach is geometric and draws inspiration from the successful application of this method by B.S. Mordukhovich and coauthors in variational and convex analysis. Subsequently, we demonstrate that our new findings for the Fenchel conjugate of set-valued mappings can be utilized to obtain many old and new calculus rules of convex generalized differentiation in both finite and infinite dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信