带有超线性中性项的非经典偶阶微分方程的振荡标准

IF 1.7 4区 数学 Q1 Mathematics
A. A. El-Gaber
{"title":"带有超线性中性项的非经典偶阶微分方程的振荡标准","authors":"A. A. El-Gaber","doi":"10.1186/s13661-024-01873-z","DOIUrl":null,"url":null,"abstract":"The oscillatory behavior of solutions of an even-order differential equation with a superlinear neutral term is considered using Riccati and generalized Riccati transformations, the integral averaging technique, and the theory of comparison. New sufficient conditions are established in the noncanonical case. An example is given to support our results.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"7 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillatory criteria of noncanonical even-order differential equations with a superlinear neutral term\",\"authors\":\"A. A. El-Gaber\",\"doi\":\"10.1186/s13661-024-01873-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oscillatory behavior of solutions of an even-order differential equation with a superlinear neutral term is considered using Riccati and generalized Riccati transformations, the integral averaging technique, and the theory of comparison. New sufficient conditions are established in the noncanonical case. An example is given to support our results.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01873-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01873-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

利用里卡提变换和广义里卡提变换、积分平均技术和比较理论,研究了带有超线性中性项的偶阶微分方程解的振荡行为。在非正则情况下建立了新的充分条件。给出了一个例子来支持我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillatory criteria of noncanonical even-order differential equations with a superlinear neutral term
The oscillatory behavior of solutions of an even-order differential equation with a superlinear neutral term is considered using Riccati and generalized Riccati transformations, the integral averaging technique, and the theory of comparison. New sufficient conditions are established in the noncanonical case. An example is given to support our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信