用于连续波激光增强型直接频率梳光谱系统的激光稳频技术

IF 1.2 4区 物理与天体物理 Q4 OPTICS
Yichi Zhang and Hongyan Fan
{"title":"用于连续波激光增强型直接频率梳光谱系统的激光稳频技术","authors":"Yichi Zhang and Hongyan Fan","doi":"10.1088/1555-6611/ad4bb1","DOIUrl":null,"url":null,"abstract":"We present the observation of high-precision direct frequency comb spectroscopy excited by an optical frequency comb and a diode laser when each of them drives one step of the two-photon transition in a rubidium vapor system. We demonstrate a stable and low noise system by directly locking the frequency of the continuous-wave laser to the rubidium two-photon transition. The frequency stability of a diode laser via the two-photon transition locking technique is 8 × 10−11 for a 1 s gate time and 3 × 10−12 for 1000 s. It proves to be a potential technique for locking the diode laser with high stability. We chose a suitable optical frequency comb pulse and the frequency of the diode laser to fulfill the double-resonance condition. These techniques eliminate spectrum line overlap and would benefit spectroscopy measurements.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser frequency stabilization for continuous-wave laser enhanced direct frequency comb spectroscopy system\",\"authors\":\"Yichi Zhang and Hongyan Fan\",\"doi\":\"10.1088/1555-6611/ad4bb1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the observation of high-precision direct frequency comb spectroscopy excited by an optical frequency comb and a diode laser when each of them drives one step of the two-photon transition in a rubidium vapor system. We demonstrate a stable and low noise system by directly locking the frequency of the continuous-wave laser to the rubidium two-photon transition. The frequency stability of a diode laser via the two-photon transition locking technique is 8 × 10−11 for a 1 s gate time and 3 × 10−12 for 1000 s. It proves to be a potential technique for locking the diode laser with high stability. We chose a suitable optical frequency comb pulse and the frequency of the diode laser to fulfill the double-resonance condition. These techniques eliminate spectrum line overlap and would benefit spectroscopy measurements.\",\"PeriodicalId\":17976,\"journal\":{\"name\":\"Laser Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1555-6611/ad4bb1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad4bb1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了由光学频率梳和二极管激光器激发的高精度直接频率梳光谱观测,当它们各自驱动铷原子蒸汽系统中的一步双光子跃迁时。通过将连续波激光器的频率直接锁定在铷原子双光子跃迁上,我们展示了一个稳定的低噪声系统。通过双光子跃迁锁定技术,二极管激光器在 1 秒栅极时间内的频率稳定性为 8 × 10-11,1000 秒内的频率稳定性为 3 × 10-12。我们选择了合适的光频梳脉冲和二极管激光器的频率,以满足双共振条件。这些技术可以消除谱线重叠,有利于光谱测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser frequency stabilization for continuous-wave laser enhanced direct frequency comb spectroscopy system
We present the observation of high-precision direct frequency comb spectroscopy excited by an optical frequency comb and a diode laser when each of them drives one step of the two-photon transition in a rubidium vapor system. We demonstrate a stable and low noise system by directly locking the frequency of the continuous-wave laser to the rubidium two-photon transition. The frequency stability of a diode laser via the two-photon transition locking technique is 8 × 10−11 for a 1 s gate time and 3 × 10−12 for 1000 s. It proves to be a potential technique for locking the diode laser with high stability. We chose a suitable optical frequency comb pulse and the frequency of the diode laser to fulfill the double-resonance condition. These techniques eliminate spectrum line overlap and would benefit spectroscopy measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Laser Physics
Laser Physics 物理-光学
CiteScore
2.60
自引率
8.30%
发文量
127
审稿时长
2.2 months
期刊介绍: Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more. The full list of subject areas covered is as follows: -physics of lasers- fibre optics and fibre lasers- quantum optics and quantum information science- ultrafast optics and strong-field physics- nonlinear optics- physics of cold trapped atoms- laser methods in chemistry, biology, medicine and ecology- laser spectroscopy- novel laser materials and lasers- optics of nanomaterials- interaction of laser radiation with matter- laser interaction with solids- photonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信