开关二叉树远程控制系统 -- I. 约束条件和不等式

Olivier Golinelli
{"title":"开关二叉树远程控制系统 -- I. 约束条件和不等式","authors":"Olivier Golinelli","doi":"arxiv-2405.16938","DOIUrl":null,"url":null,"abstract":"We study a tree coloring model introduced by Guidon (2018), initially based\non an analogy with a remote control system of a rail yard, seen as a switch\ntree. For a given rooted tree, we formalize the constraints on the coloring, in\nparticular on the minimum number of colors, and on the distribution of the\nnodes among colors. We show that the sequence $(a_1,a_2,a_3,\\cdots)$, where\n$a_i$ denotes the number of nodes with color $i$, satisfies a set of\ninequalities which only involve the sequence $(n_0,n_1,n_2,\\cdots)$ where $n_i$\ndenotes the number of nodes with height $i$. By coloring the nodes according to\ntheir depth, we deduce that these inequalities also apply to the sequence\n$(d_0,d_1,d_2,\\cdots)$ where $d_i$ denotes the number of nodes with depth $i$.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote control system of a binary tree of switches -- I. constraints and inequalities\",\"authors\":\"Olivier Golinelli\",\"doi\":\"arxiv-2405.16938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a tree coloring model introduced by Guidon (2018), initially based\\non an analogy with a remote control system of a rail yard, seen as a switch\\ntree. For a given rooted tree, we formalize the constraints on the coloring, in\\nparticular on the minimum number of colors, and on the distribution of the\\nnodes among colors. We show that the sequence $(a_1,a_2,a_3,\\\\cdots)$, where\\n$a_i$ denotes the number of nodes with color $i$, satisfies a set of\\ninequalities which only involve the sequence $(n_0,n_1,n_2,\\\\cdots)$ where $n_i$\\ndenotes the number of nodes with height $i$. By coloring the nodes according to\\ntheir depth, we deduce that these inequalities also apply to the sequence\\n$(d_0,d_1,d_2,\\\\cdots)$ where $d_i$ denotes the number of nodes with depth $i$.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.16938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 Guidon(2018)引入的树着色模型,该模型最初基于对铁路货场远程控制系统的类比,被视为开关树。对于给定的有根树,我们形式化了着色的约束,特别是颜色的最小数量,以及颜色间节点的分布。我们证明,序列 $(a_1,a_2,a_3,\cdots)$(其中 $a_i$ 表示具有颜色 $i$ 的节点数)满足一组只涉及序列 $(n_0,n_1,n_2,\cdots)$(其中 $n_i$ 表示具有高度 $i$ 的节点数)的内定式。通过根据节点的深度对节点着色,我们可以推导出这些不等式也适用于序列$(d_0,d_1,d_2,\cdots)$,其中$d_i$表示深度为$i$的节点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote control system of a binary tree of switches -- I. constraints and inequalities
We study a tree coloring model introduced by Guidon (2018), initially based on an analogy with a remote control system of a rail yard, seen as a switch tree. For a given rooted tree, we formalize the constraints on the coloring, in particular on the minimum number of colors, and on the distribution of the nodes among colors. We show that the sequence $(a_1,a_2,a_3,\cdots)$, where $a_i$ denotes the number of nodes with color $i$, satisfies a set of inequalities which only involve the sequence $(n_0,n_1,n_2,\cdots)$ where $n_i$ denotes the number of nodes with height $i$. By coloring the nodes according to their depth, we deduce that these inequalities also apply to the sequence $(d_0,d_1,d_2,\cdots)$ where $d_i$ denotes the number of nodes with depth $i$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信