具有随机缺失输出的 ExpARX 模型的稳健梯度迭代估计算法

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Chuanjiang Li, Wei Dai, Ya Gu, Yanfei Zhu
{"title":"具有随机缺失输出的 ExpARX 模型的稳健梯度迭代估计算法","authors":"Chuanjiang Li, Wei Dai, Ya Gu, Yanfei Zhu","doi":"10.1007/s12555-023-0555-8","DOIUrl":null,"url":null,"abstract":"<p>This study presents a LookAhead-RAdam gradient iterative algorithm to identify ExpARX models with random missing outputs. The LookAhead-RAdam gradient iterative algorithm is used to optimize the step size of each element and adjust the direction to effectively update the ExpARX model parameter estimation through the estimated outputs. Compared to the classical gradient iterative algorithm, this study improves the estimation accuracy of the missing outputs and the parameter estimation convergence rate by introducing the LookAhead algorithm and RAdam algorithm. To validate the algorithm developed, a series of bench tests were conducted with computational experiments. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"37 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Gradient Iterative Estimation Algorithm for ExpARX Models With Random Missing Outputs\",\"authors\":\"Chuanjiang Li, Wei Dai, Ya Gu, Yanfei Zhu\",\"doi\":\"10.1007/s12555-023-0555-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a LookAhead-RAdam gradient iterative algorithm to identify ExpARX models with random missing outputs. The LookAhead-RAdam gradient iterative algorithm is used to optimize the step size of each element and adjust the direction to effectively update the ExpARX model parameter estimation through the estimated outputs. Compared to the classical gradient iterative algorithm, this study improves the estimation accuracy of the missing outputs and the parameter estimation convergence rate by introducing the LookAhead algorithm and RAdam algorithm. To validate the algorithm developed, a series of bench tests were conducted with computational experiments. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0555-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0555-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种 LookAhead-RAdam 梯度迭代算法,用于识别随机缺失输出的 ExpARX 模型。LookAhead-RAdam 梯度迭代算法用于优化每个元素的步长并调整方向,从而通过估计输出有效更新 ExpARX 模型参数估计。与经典梯度迭代算法相比,本研究通过引入 LookAhead 算法和 RAdam 算法,提高了缺失输出估计精度和参数估计收敛速度。为了验证所开发的算法,还进行了一系列计算实验。最后,通过一个仿真实例证明了所提设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Gradient Iterative Estimation Algorithm for ExpARX Models With Random Missing Outputs

This study presents a LookAhead-RAdam gradient iterative algorithm to identify ExpARX models with random missing outputs. The LookAhead-RAdam gradient iterative algorithm is used to optimize the step size of each element and adjust the direction to effectively update the ExpARX model parameter estimation through the estimated outputs. Compared to the classical gradient iterative algorithm, this study improves the estimation accuracy of the missing outputs and the parameter estimation convergence rate by introducing the LookAhead algorithm and RAdam algorithm. To validate the algorithm developed, a series of bench tests were conducted with computational experiments. Finally, the effectiveness of the proposed design approach is demonstrated by a simulation example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Control Automation and Systems
International Journal of Control Automation and Systems 工程技术-自动化与控制系统
CiteScore
5.80
自引率
21.90%
发文量
343
审稿时长
8.7 months
期刊介绍: International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE). The journal covers three closly-related research areas including control, automation, and systems. The technical areas include Control Theory Control Applications Robotics and Automation Intelligent and Information Systems The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信