基于熵的光学相干断层成像深度神经网络训练优化

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Karri Karthik, Manjunatha Mahadevappa
{"title":"基于熵的光学相干断层成像深度神经网络训练优化","authors":"Karri Karthik, Manjunatha Mahadevappa","doi":"10.1080/08839514.2024.2355760","DOIUrl":null,"url":null,"abstract":"This paper presents an optimization technique for the number of training epochs needed for deep learning models. The proposed method eliminates the need for separate validation data and significant...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"66 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy-based deep neural network training optimization for optical coherence tomography imaging\",\"authors\":\"Karri Karthik, Manjunatha Mahadevappa\",\"doi\":\"10.1080/08839514.2024.2355760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimization technique for the number of training epochs needed for deep learning models. The proposed method eliminates the need for separate validation data and significant...\",\"PeriodicalId\":8260,\"journal\":{\"name\":\"Applied Artificial Intelligence\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/08839514.2024.2355760\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/08839514.2024.2355760","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文针对深度学习模型所需的训练历元数提出了一种优化技术。所提出的方法无需单独的验证数据和大量的...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy-based deep neural network training optimization for optical coherence tomography imaging
This paper presents an optimization technique for the number of training epochs needed for deep learning models. The proposed method eliminates the need for separate validation data and significant...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Artificial Intelligence
Applied Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
5.20
自引率
3.60%
发文量
106
审稿时长
6 months
期刊介绍: Applied Artificial Intelligence addresses concerns in applied research and applications of artificial intelligence (AI). The journal also acts as a medium for exchanging ideas and thoughts about impacts of AI research. Articles highlight advances in uses of AI systems for solving tasks in management, industry, engineering, administration, and education; evaluations of existing AI systems and tools, emphasizing comparative studies and user experiences; and the economic, social, and cultural impacts of AI. Papers on key applications, highlighting methods, time schedules, person-months needed, and other relevant material are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信