{"title":"基于衍生的夏普利值,用于全局敏感性分析和机器学习的可解释性","authors":"Hui Duan, Giray Okten","doi":"10.1615/int.j.uncertaintyquantification.2024051548","DOIUrl":null,"url":null,"abstract":"We introduce a new Shapley value approach for global sensitivity analysis and machine learning explainability. The method is based on the first-order partial derivatives of the underlying function. The computational complexity of the method is linear in dimension (number of features), as opposed to the exponential complexity of other Shapley value approaches in the literature. Examples from global sensitivity analysis and machine learning are used to compare the method numerically with activity scores, SHAP, and KernelSHAP.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivative-based Shapley value for global sensitivity analysis and machine learning explainability\",\"authors\":\"Hui Duan, Giray Okten\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2024051548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new Shapley value approach for global sensitivity analysis and machine learning explainability. The method is based on the first-order partial derivatives of the underlying function. The computational complexity of the method is linear in dimension (number of features), as opposed to the exponential complexity of other Shapley value approaches in the literature. Examples from global sensitivity analysis and machine learning are used to compare the method numerically with activity scores, SHAP, and KernelSHAP.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051548\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051548","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Derivative-based Shapley value for global sensitivity analysis and machine learning explainability
We introduce a new Shapley value approach for global sensitivity analysis and machine learning explainability. The method is based on the first-order partial derivatives of the underlying function. The computational complexity of the method is linear in dimension (number of features), as opposed to the exponential complexity of other Shapley value approaches in the literature. Examples from global sensitivity analysis and machine learning are used to compare the method numerically with activity scores, SHAP, and KernelSHAP.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.