对角线图的细胞近似值

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Khaled Alzobydi, Graham Ellis
{"title":"对角线图的细胞近似值","authors":"Khaled Alzobydi, Graham Ellis","doi":"10.1090/mcom/3981","DOIUrl":null,"url":null,"abstract":"<p>We describe an elementary algorithm for recursively constructing diagonal approximations on those finite regular CW-complexes for which the closure of each cell can be explicitly collapsed to a point. The algorithm is based on the standard proof of the acyclic carrier theorem, made constructive through the use of explicit contracting homotopies. It can be used as a theoretical tool for constructing diagonal approximations on families of polytopes in situations where the diagonals are required to satisfy certain coherence conditions. We compare its output to existing diagonal approximations for the families of simplices, cubes, associahedra and permutahedra. The algorithm yields a new explanation of a <italic>magical formula</italic> for the associahedron derived by Markl and Shnider [Trans. Amer. Math. Soc. 358 (2006), pp. 2353–2372] and Masuda, Thomas, Tonks, and Vallette [J. Éc. polytech. Math. 8 (2021), pp. 121–146] and Theorem 4.1 provides a <italic>magical formula</italic> for other polytopes. We also describe a computer implementation of the algorithm and illustrate it on a range of practical examples including the computation of cohomology rings for some low-dimensional manifolds. To achieve some of these examples the paper includes two approaches to generating a regular CW-complex structure on closed compact <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds, one using an implementation of Dehn surgery on links and the other using an implementation of pairwise identifications of faces in a tessellated boundary of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ball. The latter is illustrated in Proposition 8.1 with a topological classification of all closed orientable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds arising from pairwise identifications of faces of the cube.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular approximations to the diagonal map\",\"authors\":\"Khaled Alzobydi, Graham Ellis\",\"doi\":\"10.1090/mcom/3981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe an elementary algorithm for recursively constructing diagonal approximations on those finite regular CW-complexes for which the closure of each cell can be explicitly collapsed to a point. The algorithm is based on the standard proof of the acyclic carrier theorem, made constructive through the use of explicit contracting homotopies. It can be used as a theoretical tool for constructing diagonal approximations on families of polytopes in situations where the diagonals are required to satisfy certain coherence conditions. We compare its output to existing diagonal approximations for the families of simplices, cubes, associahedra and permutahedra. The algorithm yields a new explanation of a <italic>magical formula</italic> for the associahedron derived by Markl and Shnider [Trans. Amer. Math. Soc. 358 (2006), pp. 2353–2372] and Masuda, Thomas, Tonks, and Vallette [J. Éc. polytech. Math. 8 (2021), pp. 121–146] and Theorem 4.1 provides a <italic>magical formula</italic> for other polytopes. We also describe a computer implementation of the algorithm and illustrate it on a range of practical examples including the computation of cohomology rings for some low-dimensional manifolds. To achieve some of these examples the paper includes two approaches to generating a regular CW-complex structure on closed compact <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds, one using an implementation of Dehn surgery on links and the other using an implementation of pairwise identifications of faces in a tessellated boundary of the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ball. The latter is illustrated in Proposition 8.1 with a topological classification of all closed orientable <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds arising from pairwise identifications of faces of the cube.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种在有限正则 CW 复数上递归构造对角线近似的基本算法,对于这些有限正则 CW 复数,每个单元的闭合可以明确地折叠为一个点。该算法基于非循环载体定理的标准证明,并通过使用显式收缩同调而变得具有构造性。在要求对角线满足特定一致性条件的情况下,它可以作为一种理论工具,用于构建多边形族的对角线近似。我们将它的输出结果与现有的简面、立方体、联面和高面族的对角线近似值进行了比较。该算法对 Markl 和 Shnider [Trans. Amer. Math. Soc. 358 (2006), pp.我们还描述了该算法的计算机实现,并在一系列实际例子中进行了说明,包括一些低维流形的同调环计算。为了实现其中的一些例子,论文包含了在封闭紧凑的 3 3 -manifolds 上生成正则 CW-complex 结构的两种方法,一种是在链接上使用 Dehn 手术的实现方法,另一种是在 3 3 -ball 的网格边界上使用面的成对识别的实现方法。后者在命题 8.1 中以立方体面的成对识别所产生的所有封闭可定向 3 3 -manifold 的拓扑分类来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellular approximations to the diagonal map

We describe an elementary algorithm for recursively constructing diagonal approximations on those finite regular CW-complexes for which the closure of each cell can be explicitly collapsed to a point. The algorithm is based on the standard proof of the acyclic carrier theorem, made constructive through the use of explicit contracting homotopies. It can be used as a theoretical tool for constructing diagonal approximations on families of polytopes in situations where the diagonals are required to satisfy certain coherence conditions. We compare its output to existing diagonal approximations for the families of simplices, cubes, associahedra and permutahedra. The algorithm yields a new explanation of a magical formula for the associahedron derived by Markl and Shnider [Trans. Amer. Math. Soc. 358 (2006), pp. 2353–2372] and Masuda, Thomas, Tonks, and Vallette [J. Éc. polytech. Math. 8 (2021), pp. 121–146] and Theorem 4.1 provides a magical formula for other polytopes. We also describe a computer implementation of the algorithm and illustrate it on a range of practical examples including the computation of cohomology rings for some low-dimensional manifolds. To achieve some of these examples the paper includes two approaches to generating a regular CW-complex structure on closed compact 3 3 -manifolds, one using an implementation of Dehn surgery on links and the other using an implementation of pairwise identifications of faces in a tessellated boundary of the 3 3 -ball. The latter is illustrated in Proposition 8.1 with a topological classification of all closed orientable 3 3 -manifolds arising from pairwise identifications of faces of the cube.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信