{"title":"致动器饱和与故障条件下半马尔可夫跳跃 LPV 系统的 H∞、性能改进结果","authors":"T. Saravanakumar, Sangmoon Lee","doi":"10.1007/s12555-023-0475-7","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the transformed parameter-dependent <i>H</i><sub>∞</sub> controller design for semi-Markovian jump linear parameter varying (S-MJLPV) systems under actuator saturation and faults. In the S-MJLPV system, the semi-Markov process transition rate is time-varying during the semi-Markov process and a plant includes time-varying parameters which are bounded and measurable in magnitude. For more practical analysis and synthesis of the S-MJLPV systems, a time-varying actuator fault model and actuator saturation of the controller are considered into account simultaneously. The primary goal of this paper is to develop a transformed parameter-dependent control that makes the closed-loop system stochastically stable with <i>H</i><sub>∞</sub> performance index <i>γ</i> and provides less conservative results against actuator saturation and faults. Based on the mode-dependent Lyapunov function, new sufficient conditions are obtained to ensure that the stochastic stability of S-MJLPV systems. Eventually, an example based on the turbofan-engine model is presented to demonstrate the efficacy of our proposed methods.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"73 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Results on H∞, Performance for Semi-Markovian Jump LPV Systems Under Actuator Saturation and Faults\",\"authors\":\"T. Saravanakumar, Sangmoon Lee\",\"doi\":\"10.1007/s12555-023-0475-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the transformed parameter-dependent <i>H</i><sub>∞</sub> controller design for semi-Markovian jump linear parameter varying (S-MJLPV) systems under actuator saturation and faults. In the S-MJLPV system, the semi-Markov process transition rate is time-varying during the semi-Markov process and a plant includes time-varying parameters which are bounded and measurable in magnitude. For more practical analysis and synthesis of the S-MJLPV systems, a time-varying actuator fault model and actuator saturation of the controller are considered into account simultaneously. The primary goal of this paper is to develop a transformed parameter-dependent control that makes the closed-loop system stochastically stable with <i>H</i><sub>∞</sub> performance index <i>γ</i> and provides less conservative results against actuator saturation and faults. Based on the mode-dependent Lyapunov function, new sufficient conditions are obtained to ensure that the stochastic stability of S-MJLPV systems. Eventually, an example based on the turbofan-engine model is presented to demonstrate the efficacy of our proposed methods.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0475-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0475-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Improved Results on H∞, Performance for Semi-Markovian Jump LPV Systems Under Actuator Saturation and Faults
This paper is concerned with the transformed parameter-dependent H∞ controller design for semi-Markovian jump linear parameter varying (S-MJLPV) systems under actuator saturation and faults. In the S-MJLPV system, the semi-Markov process transition rate is time-varying during the semi-Markov process and a plant includes time-varying parameters which are bounded and measurable in magnitude. For more practical analysis and synthesis of the S-MJLPV systems, a time-varying actuator fault model and actuator saturation of the controller are considered into account simultaneously. The primary goal of this paper is to develop a transformed parameter-dependent control that makes the closed-loop system stochastically stable with H∞ performance index γ and provides less conservative results against actuator saturation and faults. Based on the mode-dependent Lyapunov function, new sufficient conditions are obtained to ensure that the stochastic stability of S-MJLPV systems. Eventually, an example based on the turbofan-engine model is presented to demonstrate the efficacy of our proposed methods.
期刊介绍:
International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE).
The journal covers three closly-related research areas including control, automation, and systems.
The technical areas include
Control Theory
Control Applications
Robotics and Automation
Intelligent and Information Systems
The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.