手部跟踪:调查

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Jinuk Heo, Hyelim Choi, Yongseok Lee, Hyunsu Kim, Harim Ji, Hyunreal Park, Youngseon Lee, Cheongkee Jung, Hai-Nguyen Nguyen, Dongjun Lee
{"title":"手部跟踪:调查","authors":"Jinuk Heo, Hyelim Choi, Yongseok Lee, Hyunsu Kim, Harim Ji, Hyunreal Park, Youngseon Lee, Cheongkee Jung, Hai-Nguyen Nguyen, Dongjun Lee","doi":"10.1007/s12555-024-0298-1","DOIUrl":null,"url":null,"abstract":"<p>Hand tracking is relevant to such a variety of applications including human-robot interaction (HRI), human-computer interaction (HCI), virtual reality (VR), and augmented reality (AR). Accurate and robust hand tracking however is challenging due to the intricacies of dynamic motion within small space and the complex interactions with nearby objects, coupled with the hurdles in real-time hand mesh reconstruction. In this paper, we conduct a comprehensive examination and analysis of existing hand tracking technologies. Through the review of major works in the literature, we have discovered numerous studies employing a diverse array of sensors, leading us to propose their categorization into seven types: vision, soft wearable, encoder, magnetic, inertial measurement unit (IMU), electromyography (EMG), and the fusion of sensor modalities. Our findings indicate that no singular solution surpasses all others, attributing to the inherent limitations of using a single sensor modality. As a result, we assert that integrating multiple sensor modalities presents a viable path toward devising a superior hand tracking solution. Ultimately, this survey paper aims to bolster interdisciplinary research efforts across the spectrum of hand tracking technologies, thereby contributing to the advancement of the field.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"45 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hand Tracking: Survey\",\"authors\":\"Jinuk Heo, Hyelim Choi, Yongseok Lee, Hyunsu Kim, Harim Ji, Hyunreal Park, Youngseon Lee, Cheongkee Jung, Hai-Nguyen Nguyen, Dongjun Lee\",\"doi\":\"10.1007/s12555-024-0298-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hand tracking is relevant to such a variety of applications including human-robot interaction (HRI), human-computer interaction (HCI), virtual reality (VR), and augmented reality (AR). Accurate and robust hand tracking however is challenging due to the intricacies of dynamic motion within small space and the complex interactions with nearby objects, coupled with the hurdles in real-time hand mesh reconstruction. In this paper, we conduct a comprehensive examination and analysis of existing hand tracking technologies. Through the review of major works in the literature, we have discovered numerous studies employing a diverse array of sensors, leading us to propose their categorization into seven types: vision, soft wearable, encoder, magnetic, inertial measurement unit (IMU), electromyography (EMG), and the fusion of sensor modalities. Our findings indicate that no singular solution surpasses all others, attributing to the inherent limitations of using a single sensor modality. As a result, we assert that integrating multiple sensor modalities presents a viable path toward devising a superior hand tracking solution. Ultimately, this survey paper aims to bolster interdisciplinary research efforts across the spectrum of hand tracking technologies, thereby contributing to the advancement of the field.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-024-0298-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-024-0298-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

手部跟踪与人机交互(HRI)、人机交互(HCI)、虚拟现实(VR)和增强现实(AR)等各种应用息息相关。然而,由于在狭小空间内动态运动的错综复杂性以及与附近物体的复杂交互,再加上实时手部网格重建的障碍,准确而稳健的手部跟踪具有挑战性。在本文中,我们对现有的手部跟踪技术进行了全面的研究和分析。通过回顾文献中的主要作品,我们发现许多研究采用了各种传感器,因此我们建议将它们分为七种类型:视觉、软性可穿戴设备、编码器、磁性、惯性测量单元(IMU)、肌电图(EMG)以及传感器模式的融合。我们的研究结果表明,由于使用单一传感器模式的固有局限性,没有一种解决方案能够超越所有其他解决方案。因此,我们认为整合多种传感器模式是设计卓越手部跟踪解决方案的可行途径。最终,本调查报告旨在促进手部追踪技术领域的跨学科研究工作,从而推动该领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand Tracking: Survey

Hand tracking is relevant to such a variety of applications including human-robot interaction (HRI), human-computer interaction (HCI), virtual reality (VR), and augmented reality (AR). Accurate and robust hand tracking however is challenging due to the intricacies of dynamic motion within small space and the complex interactions with nearby objects, coupled with the hurdles in real-time hand mesh reconstruction. In this paper, we conduct a comprehensive examination and analysis of existing hand tracking technologies. Through the review of major works in the literature, we have discovered numerous studies employing a diverse array of sensors, leading us to propose their categorization into seven types: vision, soft wearable, encoder, magnetic, inertial measurement unit (IMU), electromyography (EMG), and the fusion of sensor modalities. Our findings indicate that no singular solution surpasses all others, attributing to the inherent limitations of using a single sensor modality. As a result, we assert that integrating multiple sensor modalities presents a viable path toward devising a superior hand tracking solution. Ultimately, this survey paper aims to bolster interdisciplinary research efforts across the spectrum of hand tracking technologies, thereby contributing to the advancement of the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Control Automation and Systems
International Journal of Control Automation and Systems 工程技术-自动化与控制系统
CiteScore
5.80
自引率
21.90%
发文量
343
审稿时长
8.7 months
期刊介绍: International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE). The journal covers three closly-related research areas including control, automation, and systems. The technical areas include Control Theory Control Applications Robotics and Automation Intelligent and Information Systems The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信