作为增强型氧进化反应电催化剂的 CoFe2O4@Co3O4 纳米复合材料的动态研究

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL
Xihuan Zhang, Abdelhadi El Jaouhari, Chunyue Li, Maimoune Adnane, Wanying Liu, Abderrahman Mellalou, Fouad Ghamouss, Yuanhua Lin
{"title":"作为增强型氧进化反应电催化剂的 CoFe2O4@Co3O4 纳米复合材料的动态研究","authors":"Xihuan Zhang,&nbsp;Abdelhadi El Jaouhari,&nbsp;Chunyue Li,&nbsp;Maimoune Adnane,&nbsp;Wanying Liu,&nbsp;Abderrahman Mellalou,&nbsp;Fouad Ghamouss,&nbsp;Yuanhua Lin","doi":"10.1007/s12678-024-00877-8","DOIUrl":null,"url":null,"abstract":"<div><p>The oxygen evolution reaction (OER) holds pivotal importance in sustainable energy conversion, as it forms the critical half-reaction in various electrochemical processes, including water splitting for hydrogen production and rechargeable metal-air batteries. Here, a CoFe<sub>2</sub>O<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub> nano-composite was synthesized using a facile hydrothermal process and deposited onto the surface of nickel foam through electrophoresis. Characterization using XRD, Raman spectroscopy, and XPS confirmed the successful synthesis of the composite, exhibiting characteristic peaks of both Co<sub>3</sub>O<sub>4</sub> and CoFe<sub>2</sub>O<sub>4</sub>. The nano-composite exhibited a more amorphous phase than pure oxides, benefiting electrocatalytic activity. Scanning and transmission electron microscopy highlighted the composite’s morphological characteristics, showcasing a Co<sub>3</sub>O<sub>4</sub> island distribution on the CoFe<sub>2</sub>O<sub>4</sub> surface. Electrochemical evaluations revealed the superior oxygen evolution reaction (OER) performance of CoFe<sub>2</sub>O<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub>, with low overpotentials, faster kinetics, and enhanced stability compared to pure oxides and the benchmark RuO<sub>2</sub> catalyst. A comprehensive analysis was carried out to investigate the dynamic behavior during electrocatalytic oxygen evolution reaction. This study unveils the intricate charge and electron transfer mechanisms between cobalt and iron atoms, providing insights into their collaborative role throughout the OER process.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Investigations on CoFe2O4@Co3O4 Nano-composite as an Enhanced Electrocatalyst for Oxygen Evolution Reaction\",\"authors\":\"Xihuan Zhang,&nbsp;Abdelhadi El Jaouhari,&nbsp;Chunyue Li,&nbsp;Maimoune Adnane,&nbsp;Wanying Liu,&nbsp;Abderrahman Mellalou,&nbsp;Fouad Ghamouss,&nbsp;Yuanhua Lin\",\"doi\":\"10.1007/s12678-024-00877-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The oxygen evolution reaction (OER) holds pivotal importance in sustainable energy conversion, as it forms the critical half-reaction in various electrochemical processes, including water splitting for hydrogen production and rechargeable metal-air batteries. Here, a CoFe<sub>2</sub>O<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub> nano-composite was synthesized using a facile hydrothermal process and deposited onto the surface of nickel foam through electrophoresis. Characterization using XRD, Raman spectroscopy, and XPS confirmed the successful synthesis of the composite, exhibiting characteristic peaks of both Co<sub>3</sub>O<sub>4</sub> and CoFe<sub>2</sub>O<sub>4</sub>. The nano-composite exhibited a more amorphous phase than pure oxides, benefiting electrocatalytic activity. Scanning and transmission electron microscopy highlighted the composite’s morphological characteristics, showcasing a Co<sub>3</sub>O<sub>4</sub> island distribution on the CoFe<sub>2</sub>O<sub>4</sub> surface. Electrochemical evaluations revealed the superior oxygen evolution reaction (OER) performance of CoFe<sub>2</sub>O<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub>, with low overpotentials, faster kinetics, and enhanced stability compared to pure oxides and the benchmark RuO<sub>2</sub> catalyst. A comprehensive analysis was carried out to investigate the dynamic behavior during electrocatalytic oxygen evolution reaction. This study unveils the intricate charge and electron transfer mechanisms between cobalt and iron atoms, providing insights into their collaborative role throughout the OER process.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-024-00877-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00877-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧进化反应(OER)在可持续能源转换中具有举足轻重的地位,因为它是各种电化学过程(包括用于制氢的水分裂和可充电金属-空气电池)中的关键半反应。本文采用简便的水热法合成了 CoFe2O4@Co3O4 纳米复合材料,并通过电泳沉积到泡沫镍表面。利用 XRD、拉曼光谱和 XPS 进行的表征证实了复合材料的成功合成,显示出 Co3O4 和 CoFe2O4 的特征峰。与纯氧化物相比,纳米复合材料呈现出更多的无定形相,有利于提高电催化活性。扫描和透射电子显微镜凸显了复合材料的形态特征,显示出 CoFe2O4 表面的 Co3O4 岛状分布。电化学评估显示,与纯氧化物和基准 RuO2 催化剂相比,CoFe2O4@Co3O4 的氧进化反应(OER)性能优越,过电位低,动力学速度快,稳定性增强。研究人员对电催化氧进化反应过程中的动态行为进行了全面分析。这项研究揭示了钴原子和铁原子之间错综复杂的电荷和电子转移机制,为了解它们在整个氧催化反应过程中的协同作用提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Investigations on CoFe2O4@Co3O4 Nano-composite as an Enhanced Electrocatalyst for Oxygen Evolution Reaction

Dynamic Investigations on CoFe2O4@Co3O4 Nano-composite as an Enhanced Electrocatalyst for Oxygen Evolution Reaction

The oxygen evolution reaction (OER) holds pivotal importance in sustainable energy conversion, as it forms the critical half-reaction in various electrochemical processes, including water splitting for hydrogen production and rechargeable metal-air batteries. Here, a CoFe2O4@Co3O4 nano-composite was synthesized using a facile hydrothermal process and deposited onto the surface of nickel foam through electrophoresis. Characterization using XRD, Raman spectroscopy, and XPS confirmed the successful synthesis of the composite, exhibiting characteristic peaks of both Co3O4 and CoFe2O4. The nano-composite exhibited a more amorphous phase than pure oxides, benefiting electrocatalytic activity. Scanning and transmission electron microscopy highlighted the composite’s morphological characteristics, showcasing a Co3O4 island distribution on the CoFe2O4 surface. Electrochemical evaluations revealed the superior oxygen evolution reaction (OER) performance of CoFe2O4@Co3O4, with low overpotentials, faster kinetics, and enhanced stability compared to pure oxides and the benchmark RuO2 catalyst. A comprehensive analysis was carried out to investigate the dynamic behavior during electrocatalytic oxygen evolution reaction. This study unveils the intricate charge and electron transfer mechanisms between cobalt and iron atoms, providing insights into their collaborative role throughout the OER process.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信