Matej Benko, Iwona Chlebicka, Jørgen Endal, Błażej Miasojedow
{"title":"颗粒介质方程的前向-后向分裂算法的颗粒近似收敛率","authors":"Matej Benko, Iwona Chlebicka, Jørgen Endal, Błażej Miasojedow","doi":"arxiv-2405.18034","DOIUrl":null,"url":null,"abstract":"We study the spatially homogeneous granular medium equation\n\\[\\partial_t\\mu=\\rm{div}(\\mu\\nabla V)+\\rm{div}(\\mu(\\nabla W \\ast\n\\mu))+\\Delta\\mu\\,,\\] within a large and natural class of the confinement\npotentials $V$ and interaction potentials $W$. The considered problem do not\nneed to assume that $\\nabla V$ or $\\nabla W$ are globally Lipschitz. With the\naim of providing particle approximation of solutions, we design efficient\nforward-backward splitting algorithms. Sharp convergence rates in terms of the\nWasserstein distance are provided.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence rates of particle approximation of forward-backward splitting algorithm for granular medium equations\",\"authors\":\"Matej Benko, Iwona Chlebicka, Jørgen Endal, Błażej Miasojedow\",\"doi\":\"arxiv-2405.18034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the spatially homogeneous granular medium equation\\n\\\\[\\\\partial_t\\\\mu=\\\\rm{div}(\\\\mu\\\\nabla V)+\\\\rm{div}(\\\\mu(\\\\nabla W \\\\ast\\n\\\\mu))+\\\\Delta\\\\mu\\\\,,\\\\] within a large and natural class of the confinement\\npotentials $V$ and interaction potentials $W$. The considered problem do not\\nneed to assume that $\\\\nabla V$ or $\\\\nabla W$ are globally Lipschitz. With the\\naim of providing particle approximation of solutions, we design efficient\\nforward-backward splitting algorithms. Sharp convergence rates in terms of the\\nWasserstein distance are provided.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了空间均匀颗粒介质方程([\partial_t\mu=\rm{div}(\mu\nabla V)+\rm{div}(\mu(\nabla W \ast\mu))+\Delta\mu\,,\] within a large and natural class of the confinementpotentials $V$ and interaction potentials $W$)。所考虑的问题不需要假设 $\nabla V$ 或 $\nabla W$ 是全局的 Lipschitz。为了提供粒子近似解,我们设计了高效的前向-后向分裂算法。我们提供了以瓦瑟斯坦距离(Wasserstein distance)表示的尖锐收敛率。
Convergence rates of particle approximation of forward-backward splitting algorithm for granular medium equations
We study the spatially homogeneous granular medium equation
\[\partial_t\mu=\rm{div}(\mu\nabla V)+\rm{div}(\mu(\nabla W \ast
\mu))+\Delta\mu\,,\] within a large and natural class of the confinement
potentials $V$ and interaction potentials $W$. The considered problem do not
need to assume that $\nabla V$ or $\nabla W$ are globally Lipschitz. With the
aim of providing particle approximation of solutions, we design efficient
forward-backward splitting algorithms. Sharp convergence rates in terms of the
Wasserstein distance are provided.