{"title":"利用随机线性双层程序设计的多面体几何学","authors":"Gonzalo Muñoz, David Salas, Anton Svensson","doi":"10.1007/s10107-024-02097-w","DOIUrl":null,"url":null,"abstract":"<p>We study linear bilevel programming problems whose lower-level objective is given by a random cost vector with known distribution. We consider the case where this distribution is nonatomic, allowing to reformulate the problem of the leader using the Bayesian approach in the sense of Salas and Svensson (SIAM J Optim 33(3):2311–2340, 2023), with a decision-dependent distribution that concentrates on the vertices of the feasible set of the follower’s problem. We call this a vertex-supported belief. We prove that this formulation is piecewise affine over the so-called chamber complex of the feasible set of the high-point relaxation. We propose two algorithmic approaches to solve general problems enjoying this last property. The first one is based on enumerating the vertices of the chamber complex. This approach is not scalable, but we present it as a computational baseline and for its theoretical interest. The second one is a Monte-Carlo approximation scheme based on the fact that randomly drawn points of the domain lie, with probability 1, in the interior of full-dimensional chambers, where the problem (restricted to this chamber) can be reduced to a linear program. Finally, we evaluate these methods through computational experiments showing both approaches’ advantages and challenges.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting the polyhedral geometry of stochastic linear bilevel programming\",\"authors\":\"Gonzalo Muñoz, David Salas, Anton Svensson\",\"doi\":\"10.1007/s10107-024-02097-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study linear bilevel programming problems whose lower-level objective is given by a random cost vector with known distribution. We consider the case where this distribution is nonatomic, allowing to reformulate the problem of the leader using the Bayesian approach in the sense of Salas and Svensson (SIAM J Optim 33(3):2311–2340, 2023), with a decision-dependent distribution that concentrates on the vertices of the feasible set of the follower’s problem. We call this a vertex-supported belief. We prove that this formulation is piecewise affine over the so-called chamber complex of the feasible set of the high-point relaxation. We propose two algorithmic approaches to solve general problems enjoying this last property. The first one is based on enumerating the vertices of the chamber complex. This approach is not scalable, but we present it as a computational baseline and for its theoretical interest. The second one is a Monte-Carlo approximation scheme based on the fact that randomly drawn points of the domain lie, with probability 1, in the interior of full-dimensional chambers, where the problem (restricted to this chamber) can be reduced to a linear program. Finally, we evaluate these methods through computational experiments showing both approaches’ advantages and challenges.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02097-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02097-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的是线性双级编程问题,其下级目标由已知分布的随机代价向量给出。我们考虑了这种分布是非原子分布的情况,这样就可以使用 Salas 和 Svensson(SIAM J Optim 33(3):2311-2340, 2023)意义上的贝叶斯方法来重新表述领导者的问题,这种决策依赖分布集中在追随者问题可行集的顶点上。我们称之为顶点支持信念。我们证明,这种表述在高点松弛可行集的所谓室复上是片断仿射的。我们提出了两种算法方法来解决具有最后这一特性的一般问题。第一种方法基于枚举室复合体的顶点。这种方法不具有可扩展性,但我们将其作为计算基线并从理论上加以阐述。第二种方法是蒙特卡洛近似方案,该方案基于这样一个事实,即随机绘制的域点以 1 的概率位于全维腔室的内部,在这种情况下,问题(仅限于该腔室)可以简化为线性程序。最后,我们通过计算实验对这些方法进行了评估,展示了这两种方法的优势和挑战。
Exploiting the polyhedral geometry of stochastic linear bilevel programming
We study linear bilevel programming problems whose lower-level objective is given by a random cost vector with known distribution. We consider the case where this distribution is nonatomic, allowing to reformulate the problem of the leader using the Bayesian approach in the sense of Salas and Svensson (SIAM J Optim 33(3):2311–2340, 2023), with a decision-dependent distribution that concentrates on the vertices of the feasible set of the follower’s problem. We call this a vertex-supported belief. We prove that this formulation is piecewise affine over the so-called chamber complex of the feasible set of the high-point relaxation. We propose two algorithmic approaches to solve general problems enjoying this last property. The first one is based on enumerating the vertices of the chamber complex. This approach is not scalable, but we present it as a computational baseline and for its theoretical interest. The second one is a Monte-Carlo approximation scheme based on the fact that randomly drawn points of the domain lie, with probability 1, in the interior of full-dimensional chambers, where the problem (restricted to this chamber) can be reduced to a linear program. Finally, we evaluate these methods through computational experiments showing both approaches’ advantages and challenges.